接触角(> 150 °)并且在低滑动角下易滚落。[1–3] 因荷叶自清洁机制的发现和阐明而受到广泛关注[4,5],超疏水表面因其实际应用而引起了广泛关注,例如自清洁太阳能电池[6–8]、金属表面的腐蚀抑制层[9,10]防冰涂层[11,12]以及油/水分离膜和网[13–15]。超疏水表面已在许多细分应用中得到采用,例如防血服装[16]、防生物污损涂层[17,18],以及用于浓缩分子以进行生物测定分析并提高检测限。 [19,20] 超疏水表面具有异质形貌,具有纳米和微观粗糙度,以由气穴隔开的突起形式存在,通常使用低表面能材料制成。 [21] 纳米/微米级突起与低表面能的结合导致粘附性降低和液滴流动性提高。溶剂和有毒化学品的过度使用、漫长而繁琐的化学过程、有限的生物相容性和昂贵的材料是可持续制造超疏水表面的挑战。一种方便而通用的方法,也适用于商业
如何快速可靠地克服挑战,以促进锂基盐在潜热存储技术中的开发?原位实时显微镜用于通过微观机制了解材料的理论和实验宏观性质之间的差异。尽管无机锂盐对空气/湿度敏感,且普遍认为 LiOH 在干燥环境或真空下会分解,所以不能用于在显微镜室内合成新材料,但仍证明了该方法在无机锂盐上的可行性。以 Li 4 Br(OH) 3(一种不常见的、有前途的相变材料)为例,调查了与理论能量密度 434 kWh/m 3 约 30% 的偏差来源。起始材料的水合/脱水是主要参数之一,应用温度协议,在形貌和性能方面引起与目标材料不同的偏差。如果不考虑这一标准,则可能会对设备在使用过程中的存储容量造成灾难性的影响。本研究重点介绍了避免这些缺陷的解决方案。尽管操作条件不同,但微观尺度上的结果与宏观尺度上的结果也得到了证明© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
2 深圳大学微尺度光电子研究所二维光电子科学与技术教育部国际合作实验室,深圳 518060 3 扬州大学化工学院,扬州 225002 4 九州工业大学工学部应用化学系,北九州 804-8550,日本 抑制光生电荷复合对于高效光催化产氢至关重要。同质结因其优异的晶体结合和能带结构匹配而比异质结受到更多关注。然而,大多数同质结受到连续氧化相和还原相引起的氧化还原反应干扰,阻碍了光催化活性的提高。制备电荷相和氧化还原相完全空间分离的同质结光催化剂仍然具有挑战性。这里,我们通过背靠背几何结构制备了一种氧化相和还原相完全分离的二维同质结 CeO2。所制备的 CeO2 表现出两种不同的表面:一种光滑,另一种粗糙。实验和理论结果表明,与光滑表面相比,粗糙表面上有更多的 CeO2{220} 具有更高的还原能力,而 CeO2{200} 具有更高的可见光吸收能力。二维同质结 CeO2 产生的氢气量是普通 CeO2 纳米片的三倍,甚至超过了负载金纳米粒子的 CeO2 纳米片的氢气量。这项工作提出了一种新的同质结光催化剂模型,其电荷相和氧化还原相都完全空间分离,这将启发对同质结光催化剂的进一步研究。光催化制氢代表了一种很有前途的太阳能燃料生产方法。 1-5 光生电荷的分离 6-8 是增强光催化活性的关键因素,因为它决定了实际转移到催化剂表面的电荷量。促进电荷分离的策略包括形貌控制、9,10 掺入掺杂剂、11-14 用贵金属 15 纳米粒子改性表面以捕获光生电荷并延长其寿命,或构建异质结 16-18 或同质结 19-21 以促进电荷载体的空间分离。异质结或同质结界面处的能带偏移可产生电势梯度,使电荷载体彼此远离,从而抑制它们的复合。与异质结光催化剂相比,同质结光催化剂是同一材料两个区域之间的界面,有利于晶相键合和能带结构匹配。 22,23 同质结光催化剂可分为几种类型,如 pn 结、21,22,24 nn 结、20、25 非晶-晶体结 26 以及结合了不同形貌特征(如 0D、1D 和 2D 材料)的复合材料。23,27 例如,Zou 等人 21 将 n 型氧缺陷的 TiO 2 QD 与 p 型钛缺陷的 TiO 2 结合,制成 TiO 2 pn 同质结,结果表明 pn 同质结 TiO 2 的光催化制氢性能是纯 p-TiO 2 的 1.7 倍。尽管同质结光催化剂具有多功能性和坚固性,但在大多数同质结中,氧化相和还原相是连续的且位于同一侧,导致氧化还原反应相互干扰,阻碍了光催化活性的提高。制备表现出电荷和氧化还原相完全空间分离的同质结光催化剂仍然是一个挑战。在此,我们设计了一种空间电荷分离的二维同质结 CeO2 用于光催化产氢,其氧化相和还原相通过背靠背几何结构完全分离。所制备的 CeO2 呈现二维形貌,并表现出两种不同的表面:一种是光滑的,另一种是粗糙的。实验和理论结果表明,与光滑表面相比,粗糙表面上 CeO2 {220} 含量更高,具有更强的还原能力;CeO2 {200} 含量更高,具有更强的可见光吸收能力。二维同质结 CeO2 的产氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米粒子的 CeO2 纳米片。二维同质结 CeO2 产生的氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米颗粒的 CeO2 纳米片。二维同质结 CeO2 产生的氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米颗粒的 CeO2 纳米片。
高效的长距离能量传输对于光电和光收集设备至关重要。尽管有机分子的自组装纳米纤维表现出较长的激子扩散长度,但将这些纳米纤维排列成具有相似性质的大型有序域的薄膜仍然是一个挑战。本文展示了如何用离散长度的寡二甲基硅氧烷(o DMS)侧链对 C3 对称羰基桥接三芳胺三酰胺 (CBT) 进行功能化,从而形成完全覆盖的表面,其中排列的域最大可达 125 × 70 μ m 2,可在其中进行长距离激子传输。域内的纳米级形貌由高度有序的纳米纤维组成,纳米纤维在柔软的非晶态 o DMS 基质内具有离散的柱间距。o DMS 可防止 CBT 纤维捆绑,从而减少 CBT 柱内的缺陷数量。因此,这些柱具有高度的相干性,导致激子扩散长度为几百纳米,激子扩散率(≈ 0.05 cm 2 s − 1)与结晶四苯并菲相当。这些发现代表了通过使用 o DMS 功能化实现高度对齐的纳米纤维完全覆盖表面的下一步。
金属磷化物纳米带因特殊的电子结构、大的接触面积和优异的力学性能而成为柔性光电子微器件的理想构建材料。本工作采用拓扑化学方法从结晶红磷纳米带(cRP NR)制备单晶磷化铜纳米带(Cu 3 P NR)以保留 cRP 形貌。Cu 3 P NR 用于在 ITO/PEN 基底上构建柔性光电忆阻器,以 Cu 3 P NR 的天然氧化壳作为电荷捕获层来调节电阻开关特性。基于 Cu 3 P NR 的忆阻器在不同机械弯曲状态和不同弯曲时间下均具有出色的非挥发性存储性能。从基于 Cu 3 P NR 的忆阻器中观察到光学和电学调制的人工突触功能,并且由于记忆回溯功能,使用 Ag/Cu 3 P/ITO 人工突触阵列实现了模式识别。拓扑化学合成法是一种通用方法,可用于生产具有特殊形态和特定晶体取向的纳米结构化合物。结果还表明,金属磷化物是未来光电神经形态计算的忆阻器中的优良材料。
摘要:利用基质辅助脉冲激光蒸发 (MAPLE) 技术获得了一系列聚乙烯-醋酸乙烯酯 (EVA) 涂层。通过改变工艺参数,即目标中的激光能量密度和 EVA 共聚物浓度,可以生产出具有各种形貌和表面特征的涂层。对薄膜结构的评估基于光学和原子力显微镜分析以及轮廓测量。基于傅里叶变换红外 (FTIR) 和 X 射线光电子能谱 (XPS) 光谱进行的详细化学结构研究表明,虽然总体结构得以保留,但乙烯 (Et) 和醋酸乙烯酯 (VAc) 嵌段发生了一些改变。最明显的变化是酯基转化为酮和羧基;尽管如此,脂肪族主链也发生了一些变化。无论使用何种工艺参数,EVA 涂层的化学结构都会发生变化。研究表明,使用氯仿作为溶剂溶解 EVA 共聚物可能是造成这种变化的原因,而且 EVA 大分子倾向于形成簇。然而,由于结构改变程度较低,MAPLE 技术已被证明可成功用于从结构更复杂的聚合物中获得涂层,这些聚合物可溶于有限数量的溶剂中。
Inconel 718 是一种镍基超级合金,由于其在高温下具有出色的性能,因此是常用的火箭发动机材料。其疲劳寿命在很大程度上取决于表面粗糙度,因为疲劳会在表面引入和扩展裂纹。Aerojet Rocketdyne 设定的零件标准通常要求表面粗糙度值为 64 至 125 Ra。但是,精加工过程中产生的表面形貌和残余应力也会影响疲劳性能。该项目的具体目标是进行文献综述并编写实验方法,以确定车削、喷砂和抛光产生的表面粗糙度、形貌和残余应力如何累积影响中高周疲劳。现有文献显示,经过固溶处理和时效处理的抛光 Inconel 718 在 500 至 600 MPa 的应力幅度范围内达到高周疲劳状态。此范围将成为为 Aerojet 使用的常见精加工工艺(抛光、车削和喷砂)生成有用的 S-N 曲线的起点。测试方法和分析技术将包括使用 Ambios XP1 触针轮廓仪进行表面粗糙度测量、表面形貌的扫描电子显微镜 (SEM) 成像、完全反向悬臂弯曲疲劳测试和 SEM 断裂分析。解决的安全问题与疲劳测试、喷砂和使用 Kalling 溶液蚀刻 Inconel 718 金相学样品有关。
摘要:首次系统地研究了通过高真空化学气相沉积从硼氮烷中生长六方氮化硼 (hBN) 在外延 Ge(001)/Si 衬底上的过程。分别评估了 10 − 7 –10 − 3 mba r 和 900–980 ◦ C 范围内的工艺压力和生长温度对 hBN 薄膜的形貌、生长速率和晶体质量的影响。在 900 ◦ C 下,获得了横向晶粒尺寸约为 2–3 nm 的纳米晶 hBN 薄膜,并通过高分辨率透射电子显微镜图像进行了确认。X 射线光电子能谱证实了原子 N:B 比为 1 ± 0.1。通过原子力显微镜观察到三维生长模式。增加反应器中的工艺压力主要影响生长速率,对晶体质量的影响很小,对主要生长模式没有影响。在 980 ◦ C 下生长 hBN 会增加平均晶粒尺寸,并在 Ge 表面形成 3-10 个取向良好、垂直堆叠的 hBN 层。探索性从头算密度泛函理论模拟表明,hBN 边缘被氢饱和,并且有人提出,在装置的热部件上产生的 H 自由基部分去饱和是导致生长的原因。
摘要:纳米台阶作为经典的纳米几何参考材料,在半导体工业中用于校准测量,因此控制纳米台阶的高度是保证测量准确的关键。为此,本研究采用原子层沉积(ALD)结合湿法刻蚀制备了形貌良好的高度为1,2,3和4nm的纳米台阶。利用三维保形ALD工艺有效控制制备的纳米台阶的粗糙度。此外,使用基于仿真的分析研究了表面粗糙度与高度之间的关系。本质上,粗糙度控制是制备临界尺寸小于5nm的纳米台阶的关键。在本研究中,通过ALD和湿法刻蚀相结合成功实现的纳米台阶的最小高度为1nm。此外,基于1nm纳米台阶样品,分析了标准材料质量保证的前提条件和制备方法的影响因素。最后,利用制备的样品进行时间依赖性实验,验证了纳米台阶作为参考材料的最佳稳定性。这项研究对制备高度在5纳米以内的纳米几何参考材料具有指导意义,并且该方法可以方便地用于制备晶片尺寸台阶高度参考材料,从而实现其在集成电路生产线中大规模工业化在线校准应用。
基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离