抽象的外臂动力蛋白(OAD)是纤毛跳动的主要力发生器。尽管OAD损失是人类原发性睫状运动障碍的最常见原因,但OAD的对接机制在纤毛双线微管上(DMT)仍然难以捉摸脊椎动物。在这里,我们使用斑马鱼精子和冷冻电子层析摄影术分析了脊椎动物OAD-DC(停靠复合物)的五个组成部分中的Calaxin/efcab1和ARMC4的功能。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。 详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。 我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。
clasps(细胞质接头相关蛋白)是微管动力学的无处不在稳定剂,但是它们在微管加末端的分子靶标尚不清楚。使用基于DNA折纸的重建,我们表明,人类clasp2的簇在Sta-Bilized微管尖端上与末端非GTP小管形成负载键。此活性依赖于CLASP2的非常规的TOG2结构域,该结构域在转化为聚合竞争性的GTP小管蛋白时将其高亲和力与非GTP二聚体释放。CLASP2识别核苷酸特异性小管蛋白构象并稳定灾难性的非GTP微管与末端肾小管上GDP和GTP之间的交换相互交换的能力。我们提出,偶发存在的非GTP小管蛋白的TOG2依赖性稳定性代表了一种独特的分子机制,可以抑制自由组装的微管处于自由组装的微管末端的灾难,并促进持久的小管蛋白在负荷骨螺栓固定的末端,例如在射精的细胞中,例如在射电室中。
将大脑视为由简单神经元组成的复杂计算机无法解释意识或认知的基本特征。没有突触的单细胞生物利用其细胞骨架微管执行有目的的智能功能。需要一个新的范式来将大脑视为一个尺度不变的层次结构,既从神经元水平向上延伸到越来越大的神经元网络,也向下、向内延伸到神经元内细胞骨架微管中更深、更快的量子和经典过程。证据表明,微管中存在在太赫兹、千兆赫兹、兆赫兹、千赫兹和赫兹频率范围内重复的自相似传导共振模式。这些传导共振显然起源于太赫兹量子偶极振荡和每个微管蛋白(微管的组成亚基和大脑中最丰富的蛋白质)中色氨酸、苯丙氨酸和酪氨酸的芳香族氨基酸环的π电子共振云之间的光学相互作用。现在,来自培养的神经元网络的证据还表明,树突状体细胞微管中的千兆赫和兆赫振荡调节远端轴突分支的特定放电,从而因果地调节膜和突触活动。大脑应该被视为一个尺度不变的层次结构,其中量子和经典过程对意识和认知至关重要,这些过程源自神经元内的微管。
从果蝇中的基因组DNA制备该方案可以从40-100 mg的成年蝇(蝇重约1 mg)中分离出高度纯的基因组DNA。首先,在核保持完整的条件下,蝇是在缓冲液中磨碎的,然后使用SDS将DNA从断裂的组织中释放出来。接下来,进行常规的苯酚提取(去除蛋白质)和氯仿提取(去除苯酚),并用乙醇沉淀核酸。离心后(去除脂质和小细胞分子),将核酸沉淀溶解并用rnasea(降解RNA)和蛋白酶K(降解rNASEA和其他蛋白质)串行消化。其他苯酚/氯仿沉淀和乙醇沉淀产生高度纯化的基因组DNA。我们的目标是完整的基因组DNA - 避免通过过度的移液和涡旋剪切DNA。1。将50个成年果蝇放入装有微型植物的1.5 mL微管中,并在500 µl的缓冲液中彻底磨碎A。用500 µl的缓冲液B冲洗杵,将冲洗液加入匀浆中;通过反转微管轻轻混合。在37°C下孵育1小时2。切断P1000微量移动尖端的尖端,然后使用它将匀浆(500 µL)的一半转移到第二个微管中。苯酚通过在每个管,帽和混合物中添加相等的体积(500 µL)Te饱和苯酚来提取样品。离心5分钟。3。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。离心5分钟。4。5。通过在每个管,帽和混合物中添加等体积(500 µl)苯酚的苯酚来重新提取样品。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。氯仿通过在每个管,帽和混合物中添加等体积(500 µl)的氯仿提取样品。离心1分钟。使用截止尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。将NaCl添加到0.1m的最终浓度。乙醇通过在每个微管中添加2卷(〜850 µl)的EtOH来沉淀您的样品;轻轻混合。观察核酸的沉淀。将微管放在-20°C过夜以鼓励沉淀。6。离心10分钟。丢弃上清液;短暂地干燥SpeedVac中的颗粒(将显示使用)。7。如下,将样品组合到单个微管中。然后,使用截止P200尖端将500 µl TE缓冲液加到一个管中
引起抑制所需的浓度仅略高于微管蛋白浓度。在相同浓度和较高浓度下的细胞切拉蛋白B(CB)没有明显的作用。细胞切拉蛋白A还抑制秋水仙碱结合活性,表明它含有小管蛋白分子。结果表明Ca与微管蛋白的硫基团的反应是为了作用。” 从此摘要中解读得知细胞切拉斯蛋白A有抑制微管蛋白自我组合的效果,而细胞切拉斯蛋白a colchicine与粉Tubulin的结合能力,作者只是,“建议”这样的效果可能是因为微管蛋白
对癌细胞(例如异常,修饰或夸大蛋白质)至关重要的某些生物标记物。5最近,微管蛋白聚合被认为是搜索和开发抗癌药物的重要分子靶标。6小管蛋白的聚合是形成在细胞功能中具有至关重要作用的微管,包括维持细胞结构,细胞内转运以及细胞分裂的有丝分裂纺锤体形成。7,8近几十年来,已经将广泛的天然化合物和合成成分鉴定为干扰微管蛋白 - 微动动力学的抗癌药物。9 - 11此类药物的临床成功,该靶标的临床成功是该目标对新的抗微管蛋白聚合化合物的设计和开发,作为有效的靶向抗癌方案。12
先天免疫是抵御病毒的第一道防线,其中线粒体在诱导干扰素 (IFN) 反应中起着重要作用。BHRF1 是一种在 Epstein-Barr 病毒再激活过程中表达的多功能病毒蛋白,它会调节线粒体动力学并破坏 IFN 信号通路。线粒体是一种可移动的细胞器,借助细胞骨架,特别是微管 (MT) 网络,它可以在细胞质中移动。微管会经历各种翻译后修饰,其中包括微管蛋白乙酰化。在本研究中,我们证明 BHRF1 会诱导微管过度乙酰化以逃避先天免疫。事实上,BHRF1 的表达会诱导缩短的线粒体聚集在细胞核旁边。这种“线粒体聚集体”围绕着丝粒组织,其形成依赖于微管。我们还观察到 α-微管蛋白乙酰转移酶 ATAT1 与 BHRF1 相互作用。使用 ATAT1 敲低或不可乙酰化的 α-微管蛋白突变体,我们证明了这种高乙酰化对于线粒体聚集体的形成是必需的。在 EBV 重新激活期间也观察到了类似的结果。我们研究了导致线粒体聚集的机制,并确定了运动蛋白是线粒体聚集所需的马达。最后,我们证明了 BHRF1 需要 MT 高乙酰化来阻止 IFN 反应的诱导。此外,MT 高乙酰化的丧失会阻止自噬体定位到靠近线粒体聚集体的位置,从而阻碍 BHRF1 启动线粒体自噬,而线粒体自噬对于抑制信号通路至关重要。因此,我们的结果揭示了 MT 网络及其乙酰化水平在诱导亲病毒线粒体自噬中的作用。
第 12 章 有丝分裂抑制剂的故事 – 长春花 – 紫杉醇 221009dj3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 12 章 有丝分裂抑制剂的故事:紫杉醇和长春花。 本章介绍的抗癌药物是在某些植物或海洋生物中发现的毒素,它们可以阻断在有丝分裂过程中将染色体拉开的微管。微管还将必需分子沿着神经细胞的轴突向下传送,这就是这些药物会损害神经细胞的原因。 来自天然产物的抗癌药物 自然界的动物、植物和微生物充满了生物战剂,不同物种之间会发生冲突。天然毒药可以抵御捕食者和竞争对手。有些药物历来被人们用来下毒或治病。有些药物被用作治疗癌症的药物(Cragg 和 Newman,2004;Vindya 等人,2015)。由于这些药物也是毒药,因此,与大多数用于癌症化疗的药物一样,必须仔细调整给患者的剂量,以在不产生过多毒性的情况下对癌症产生显著作用。那么,这些微管毒药是如何起作用的呢?在有丝分裂期间,新形成的染色体对被称为微管的纤维拉开。然后每个子细胞都会得到一对新形成的染色体对,尽管癌细胞通常有异常的有丝分裂,从而产生具有异常染色体组的细胞。抗微管药物的主要作用是削弱有丝分裂时的细胞分裂。然而,与大多数癌症化疗一样,这些微管结合药物仅对那些比关键正常组织对它们更敏感的癌症有效。我将讲述两类抗微管药物的故事,它们
为了分析有丝分裂过程中细胞结构的分析,需要纳米分辨率来可视化纺锤体中微管的组织。在这里,我们提出了一种详细的方案,可用于在培养物中生长的细胞中整个有丝分裂纺锤体的3D重建。为此,我们将富含有丝分裂阶段的哺乳动物细胞附着在蓝宝石盘上。我们的协议进一步涉及通过高压冻结,冻结固定和树脂嵌入的冷冻污染。然后,我们使用荧光光学显微镜在树脂包裹的样品中选择有丝分裂细胞。接下来是大规模电子断层扫描,以重建3D中所选的有丝分裂纺锤体。然后,生成和缝合的电子断层图用于半自动分段微管,以进行纺锤体组织的随后定量分析。因此,通过提供详细的相关光和电子显微镜(CLEM)方法,我们为细胞生物学家提供了一种工具集来简化纺锤体微管的3D可视化和分析(http://kiewisz.shinyapps.io/asga)。此外,我们指的是一个最近启动的平台,该平台允许交互式显示3D重建有丝分裂纺锤体(https://cfci.shinyapps.io/asga_3dviewer/)。
为了分析有丝分裂过程中细胞结构的分析,需要纳米分辨率来可视化纺锤体中微管的组织。在这里,我们提出了一种详细的方案,可用于在培养物中生长的细胞中整个有丝分裂纺锤体的3D重建。为此,我们将富含有丝分裂阶段的哺乳动物细胞附着在蓝宝石盘上。我们的协议进一步涉及通过高压冻结,冻结固定和树脂嵌入的冷冻污染。然后,我们使用荧光光学显微镜在树脂包裹的样品中选择有丝分裂细胞。接下来是大规模电子断层扫描,以重建3D中所选的有丝分裂纺锤体。然后,生成和缝合的电子断层图用于半自动分段微管,以进行纺锤体组织的随后定量分析。因此,通过提供详细的相关光和电子显微镜(CLEM)方法,我们为细胞生物学家提供了一种工具集来简化纺锤体微管的3D可视化和分析(http://kiewisz.shinyapps.io/asga)。此外,我们指的是一个最近启动的平台,该平台允许交互式显示3D重建有丝分裂纺锤体(https://cfci.shinyapps.io/asga_3dviewer/)。