混合忆阻器-CMOS神经元用于全硬件忆阻脉冲神经网络的原位学习 张旭萌 #1,2,3、陆建 #2、王睿 2,3、魏劲松 2、石拓 2,4、窦春梦 2,3、吴祖恒 2,3、尚大山 2,3、幸国忠 2,3、刘奇*1,2、刘明 1,2 1 复旦大学前沿芯片与系统研究所,上海 200433,中国,2 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029,中国,3 中国科学院大学,北京 100049,中国,4 浙江实验室,杭州 311122。 E-mail: qi_liu@fudan.edu.cn #这些作者对这项工作做出了同等贡献。摘要:
摘要 随着基于忆阻技术的内存计算系统的迅速兴起,将此类内存设备集成到大规模架构中是需要解决的主要问题之一。在本文中,我们研究了基于 HfO 2 的忆阻设备在大规模 CMOS 系统(即 200 毫米晶圆)中的集成。分析了单金属-绝缘体-金属设备的直流特性,同时考虑了设备间的差异和开关特性。此外,还分析了样品原始状态下漏电流水平的分布,并将其与被测设备中未成形的忆阻器数量相关联。最后,将得到的结果拟合到基于物理的紧凑模型中,从而可以将其集成到更大规模的模拟环境中。
引言由于构建太比特容量的非易失性存储器集成电路和在神经形态计算中的应用前景看好[1],基于电介质电阻切换的存储器设备领域的研究数量呈指数级增长。由于缺乏理想的电介质、通过结构缺陷限制电流泄漏以及隧道效应,基于电荷存储的存储单元已经接近缩放的物理极限。相反,在基于电阻切换机制 (ReRAM) 的存储单元中,不需要理想的电介质,但其局部缺陷区域的结构必须限制在纳米级。在外部电场的影响下,该区域中的阳离子-阴离子电荷传输导致电介质结构缺陷发生局部可逆变化,这种变化在外部表现为单元电导率的逐步变化和高阻状态(HRS 或 RESET 状态)和低阻状态(LRS 或 SET 状态)之间的电阻切换。这些状态是在暴露于具有特定极性、持续时间和幅度的开关脉冲后建立的。在没有外部电场的情况下,理想的忆阻器(具有记忆功能的电阻器)能够在单元电阻的固定值下根据需要长时间维持HRS和LRS。因此,忆阻器存储单元中的一比特信息以结构变化的形式存储在两个导电电极之间封闭的电介质的局部区域中。只有两级电阻(一位)的忆阻器集成到交叉结构[2–6]中,并以3D配置
本文综述了忆阻器的基本结构原理和材料,讨论了二元金属氧化物和钙钛矿忆阻器现有的研究,并在现有研究的基础上描述了它们的应用现状。最后对忆阻器的发展进行了全面的总结和展望,未来,忆阻器有望突破硅基集成电路摩尔速率的限制,为电路优化和计算机体系结构的发展做出贡献。
一种能够模仿人脑同时处理多种类型数据能力的神经形态计算芯片可以从根本上革新和改进备受诟病的冯诺依曼计算机架构。忆阻器是构建神经形态智能系统的最佳硬件单元之一,因为它们在固有低电压下工作、使用多位存储并且制造成本低廉。然而,作为一种无源器件,忆阻器单元需要外部能量才能运行,导致功耗高且电路结构复杂。最近,一种新兴的自供电忆阻系统有望完美解决上述问题,该系统主要由忆阻器和电动纳米发电机组成。它因无电运行的优势而引起了人们的极大兴趣。在这篇综述中,我们系统地描述了从存储到神经形态计算的自供电忆阻系统。这篇综述还证明了自供电忆阻系统在人工智能中的应用前景。
与人类视觉相比,由图像传感器和处理器组成的传统机器视觉由于图像感测和处理在物理上分离,存在高延迟和大功耗的问题。具有大脑启发视觉感知的神经形态视觉系统为该问题提供了一个有希望的解决方案。在这里,我们提出并演示了一种原型神经形态视觉系统,该系统通过将视网膜传感器与忆阻交叉开关联网。我们使用具有栅极可调光响应的 WSe 2 /h-BN/Al 2 O 3 范德华异质结构来制造视网膜传感器,以紧密模拟人类视网膜同时感测和处理图像的能力。然后,我们将传感器与大规模 Pt/Ta/HfO 2 /Ta 单晶体管单电阻 (1T1R) 忆阻交叉开关联网,该交叉开关的作用类似于人脑中的视觉皮层。实现的神经形态视觉系统可以快速识别字母和跟踪物体,表明在完全模拟状态下具有图像感测、处理和识别的能力。我们的工作表明,这种神经形态视觉系统可能会为未来的视觉感知应用开辟前所未有的机会。
在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
非挥发性电阻开关,也称为忆阻器 1 效应,即电场改变双端器件的电阻状态,已成为高密度信息存储、计算和可重构系统 2 – 9 开发中的一个重要概念。过去十年,非挥发性电阻开关材料(如金属氧化物和固体电解质)取得了实质性进展。长期以来,人们认为漏电流会阻止在纳米薄绝缘层中观察到这种现象。然而,最近在过渡金属二硫属化物 10, 11 和六方氮化硼 12 夹层结构(也称为原子阻断器)的二维单分子层中发现的非挥发性电阻开关推翻了这种观点,并由于尺寸缩放的好处增加了一个新的材料维度 10, 13。我们在此以单层 MoS 2 为模型系统,阐明了原子片中切换机制的起源。原子成像和光谱表明,金属取代硫空位会导致电阻发生非挥发性变化,这得到了缺陷结构和电子状态计算研究的证实。这些发现提供了对非挥发性切换的原子理解,并开辟了精确缺陷工程的新方向,精确到单个缺陷,朝着实现最小的忆阻器的方向发展,以应用于超密集存储器、神经形态计算和射频通信系统 2、3、11。通过结合扫描隧道显微镜/扫描隧道光谱 (STM/STS) 和局部传输研究,我们观察到硫空位(MoS 2 单层中的主要缺陷)在其天然形式下不起低电阻路径的作用,这与金属氧化物存储器中氧空位的影响形成鲜明对比。 然而,从底部或顶部电极迁移的金属离子(例如金离子)可以取代硫空位,产生导电的局部态密度 (LDOS),从而驱动原子片进入低阻状态。 在反向电场下去除金原子后,缺陷恢复其初始空位结构,系统返回到高阻状态。 这种导电点切换机制类似于在原子级上形成导电桥存储器 14。然而,它本质上是不同的,也是独一无二的,因为单个金属离子填充了晶格中的单个空位,而不是通过高度无序的材料形成金属桥。我们发现硫空位在 2 纳米间距处稳定,导致忆阻器密度约为每 1 个单位
基于深度学习和 GPU 实现的解决方案已导致许多 AI 任务得到大规模改进,但也导致对计算能力的需求呈指数级增长。最近的分析表明,自 2012 年以来,对计算能力的需求增加了 30 万倍,估计每 3.4 个月这一需求就会翻一番 — — 这一速度远远快于历史上通过摩尔定律实现的改进(在同一时期内提高了七倍)。[1] 与此同时,摩尔定律在过去几年里显著放缓,[2] 因为有强烈迹象表明,我们将无法继续缩小互补金属氧化物半导体 (CMOS) 晶体管的尺寸。这要求探索替代技术路线图,以开发可扩展且高效的 AI 解决方案。