摘要 - 基于视觉的自定位是一种至关重要的技术,用于在GPS剥夺环境中实现自主机器人导航。但是,标准帧摄像机会受到运动模糊的影响,并且动态范围有限。这项研究着重于使用基于事件的摄像机进行自定义的有效特征跟踪。这样的摄像机不提供环境的常规快照,而是异步收集与每个像素中每个像素中一小部分照明的事件,从而解决了在快速运动和高动态范围内运动模糊问题的问题。特别是,我们提出了一个基于连续的实时异步性异步跟踪管道,名为速率。此管道集成了(i)使用活动事件表面的时间切片连续初始化跟踪器,以及(ii)带有建议的“跟踪管理器”的跟踪器节点,由基于网格的分销商组成,以减少冗余跟踪器并删除差质量差的质量。使用公共数据集进行评估表明,我们的方法保持了稳定的跟踪功能,并且与仅限的事件跟踪方法相比,在维护甚至改进跟踪准确性的同时,进行实时跟踪有效。我们的ROS实施以开放源为:https://github.com/mikihiroikura/rate
摘要 - 在机器人增强学习中,SIM2REAL差距仍然是一个关键的挑战。但是,静态摩擦对SIM2REAL的影响尚未得到充实。常规域随机化方法通常从其参数空间中排除静态摩擦。在我们的机器人加强学习任务中,这种常规域随机方法导致了明显不足的现实世界模型。为了应对这一SIM2REAL挑战,我们采用了执行器网作为常规域随机化的替代方案。虽然这种方法能够成功地转移到平面运动,但在楼梯等复杂地形上失败了。为了研究影响机器人关节中SIM2REAL的物理参数,我们开发了一个控制理论关节模型并进行了系统的参数鉴定。我们的分析表明,机器人关节中出乎意料的高摩擦力比率。为了减轻其影响,我们实施了SIM2Real的静态摩擦域随机化。认识到摩擦建模引入的训练难度增加,我们提出了一种简单新颖的解决方案,以降低学习复杂性。为了验证这种方法,我们进行了比较三种方法的综合SIM2SIM和SIM2REAL实验:常规域随机化(无静态摩擦),执行器NET和我们的静态摩擦感知域随机化。所有实验均利用快速运动适应(RMA)算法。结果表明,我们的方法实现了出色的自适应能力和整体性能。
高速喷气式飞机的飞行员需要经过多年的高级训练才能获得出色的操控能力。如果能够将飞行员和其他领域专家的技能、知识和偏好提炼成一个能够捕捉真实操控行为的软件模型,那么这种方法将具有重大的实用价值。这种模型的可扩展性将使其可用于战略规划演习、培训以及其他软件系统的开发和测试。这将使人类驾驶专业知识这一稀缺资源获得更大的回报。这一愿景面临着实际挑战,即准确地获取所需知识以将其编入自动化系统。在许多需要直观决策和快速运动控制的情况下,专家一看到良好的操控性就知道,但并不总是能用形式或语言术语表达原因 [1]。∗ 显性知识获取策略也可能非常耗时,任何依赖专家演示的方法也是如此。这促使人们采用使用更稀疏数据源的基于学习的方法。鉴于透明度对于安全关键型航空应用的重要性 [ 2 , 3 ],任何此类方法都必须学习可解释(即人类可读和可理解)的专家知识模型,以促进信任和验证。本文提出了一个可能的解决方案。我们使用人工强化学习 (RL) 代理来生成 si 数据集
To ensure reliable environmental perception in the realm of autonomous driving, precise and robust multi- object tracking proves imperative.This study proposes an innovative approach to multi-object tracking by combining YOLOv9's sophisticated detection capabilities with an enhanced DeepSORT tracking algorithm, enriched through the integration of optical flow.In the proposed method, the YOLOv9 detector acutely identifies objects in input images, and these detected entities are subsequently transmitted to the optimized DeepSORT tracking algorithm.The principal contribution of this study lies in improving the Kalman filter measurement model within DeepSORT by incorporating robust local optical flow, thus adding a velocity dimension to the filter's update vector.这种新颖的方法可显着提高遮挡,快速运动和外观变化的追踪弹性。Evaluations on MOT17 and KITTI show substantial improvement gains of 2.42%, 2.85%, and 1.84% for HOTA, MOTA, and IDF1, respectively, on MOT17, and 1.94% in MOTA and 2.09% in HOTA on KITTI.The proposed method particularly excels in managing scenarios involving dense traffic and light variations, which are recurrent problems in dynamic urban environments.This enhanced performance positions the proposed solution as an essential component of future perception architectures for autonomous vehicles, promising safer and more efficient navigation in the complex real world.
Cybersickness是与虚拟现实(VR)用户体验相关的常见疾病。基于机器学习(ML)和深度学习(DL)的几种自动化方法,以检测网络病。但是,这些Cybersickness检测方法中的大多数被视为计算密集型和黑盒方法。因此,这些技术既不值得信赖,也不是实用的,因为它可以在独立的能源受限的VR头部安装设备(HMD)上。在这项工作中,我们提出了可解释的人工智能(XAI)基于Cybersickness检测的框架LiteVR,解释了模型的结果,降低了功能维度和整体计算成本。首先,我们基于长期短期记忆(LSTM),门控复发单元(GRU)和多层感知器(MLP)开发了三个Cybersickness DL模型。然后,我们采用了事后解释,例如Shapley添加说明(SHAP),以解释结果并提取Cybersickness的最主要特征。最后,我们以减少的功能数量重新训练DL模型。我们的结果表明,引人注目的特征是Cybersickness Declection的最主要的。此外,基于基于XAI的功能排名和降低维度,我们显着将模型的大小降低了4.3倍,训练时间最高为5.6倍,其推理时间最高为3.8倍,最高可降低Cybersick Nessick Nespection tection coctection tection coctiction Percipation Percipation和低回归误差(即快速运动尺度)(FMS)。我们提出的LITE LSTM模型在分类网络病和回归(即FMS 1-10)中获得了94%的精度,其根平方误差(RMSE)为0。30,表现优于最先进的。我们提出的LITEVR框架可以帮助研究人员和从业人员在独立的VR HMD中分析,检测和部署其基于DL的Cybersickness检测模型。
利用高级计算机视觉技术,例如深度学习和对象跟踪算法,手球视频中有能力的主动玩家检测功能可以自动在高速匹配中自动跟踪玩家的运动。这项创新不仅丰富了教练对球员绩效和团队动态的见解,而且还通过实时分析和增强现实增强来提高观众的参与度。在基于实践的手球视频的背景下,多个玩家经常出现,并非所有参与者都从事特定的练习或采用推荐的手球技术。本研究探讨了采用基于CNN的YOLOV8预训练模型与转移学习技术相结合的新方法,以增强手球识别。Yolov8 Architecture的高级功能是利用的,以解决玩家跟踪,球轨迹预测和复杂玩家互动中的现有差距。通过转移学习,该模型是使用特定于手球的数据进行微调的,从而在识别玩家,球和关键元素方面进行适应和专业化。该方法利用Yolov8的实时处理和多尺度分析来提高动态游戏方案的准确性,克服诸如遮挡和快速运动之类的挑战。通过将Yolov8预训练的模型与转移学习相结合,这种方法在实现全面有效的手球识别方面展现了有希望的进步,可以显着增强对玩家动态,球运动和整体游戏玩法的见解。Yolov8与转移学习的融合涉及利用Yolov8的预训练的特征来提取对象特征,然后对手球特异性数据的模型进行微调,以增强其在手球识别的背景下识别球员,球和其他基本要素的能力。我们使用751个手球场景视频的自定义数据集系统地评估了拟议的方法,该视频在培训年轻学员和男孩和男孩的年轻学员和手球学校期间捕获了[22]。测试涵盖了近60,000帧,并结合了诸如灵敏度,特异性和准确性之类的指标。结果表明,我们的方法超过了最新技术,展示了准确性的提高。值得注意的是,提出的方法表现出提高的效率,达到敏感性92.18%,特异性91.13%,精度分别为93.57%和F-评分94.33%。
高速喷气式飞机的飞行员需要经过多年的高级训练才能获得出色的操控能力。如果能够将飞行员和其他领域专家的技能、知识和偏好提炼成一个能够捕捉真实操控行为的软件模型,那么这种方法将具有重大的实用价值。这种模型的可扩展性将使其可用于战略规划演习、培训以及其他软件系统的开发和测试。这将使人类驾驶专业知识这一稀缺资源获得更大的回报。这一愿景面临着实际挑战,即准确地获取所需知识以将其编入自动化系统。在许多需要直觉决策和快速运动控制的情况下,专家们一看到良好的操控性就知道,但并不总是能用形式或语言术语表达原因 [1]。∗ 显性知识获取策略也可能非常耗时,任何依赖专家演示的方法也是如此。这促使人们采用一种使用稀疏数据源的基于学习的方法。鉴于透明度对于安全至关重要的航空应用的重要性 [2、3],任何此类方法都必须学习一个可解释(即人类可读和可理解)的专家知识模型,以促进信任和验证。本文提出了一种可能的解决方案。我们使用人工智能强化学习 (RL) 代理来生成模拟飞行轨迹数据集,然后咨询专家以获得对这些轨迹的成对偏好,表明哪一个是针对给定感兴趣任务的首选解决方案。众所周知,成对偏好引出具有稳健性和时效性,并为组合来自多个专家的数据提供了基础,而无需就共同的评分系统达成一致。然后,我们使用统计学习算法以基于规则的树结构形式构建收集到的偏好的可解释解释模型。反过来,该树被用作奖励函数来训练代理生成更高质量的轨迹,并迭代该过程直至收敛。最终结果是两个不同的输出,它们可以形成未来规划、培训和开发软件的宝贵组成部分:
在许多现实世界中,必须实时进行6D自我动作估计和映射。尤其是在机器人领域,低延迟和稳健的运动估计对于控制自动驾驶是必不可少的。动态生成的地图对于避免障碍物和路径计划也是必不可少的。迄今为止,实时融合各种传感器及其大量数据仍然是一项相当艰巨的任务。当传感器遭受外部诉讼和测量误差时,问题的复杂性就会增加。当自我运动估计和映射应在6D中进行,准确,稳健,低延迟且形状较小时,问题尤其困难。在本文中,我们建议通过以粗到精细的方式利用范围,磁性和内部感测来解决问题。这项工作的内容分为两个主要小节:使用多传感器融合方法在室内环境中进行稳健的态度和标题估计,以及使用基于激光拉尔达的系统的低延迟6D EGO-MOTION估计和映射技术。在第一部分中,我们提出了一种基于偏僻的二惯性和磁性传感器的新型多传感器融合。它的发展是为了进行稳健的态度和标题估计,并能够补偿外部磁场异常。我们制定了一个基于相关的滤波器模型,用于预处理术语数据,并采用了复发性神经网络(RNN)融合模型,以在室内环境中执行强大的估计。在第二部分中,我们提出了基于LiDAR扫描切片和并发匹配方法的低延迟大满贯框架。此框架 - 在并发的多线程匹配管道中使用切成薄片的点云数据,并利用态度和标题角度来实现高更新率和低延迟6D自我感动估计。将lissajous旋转模式应用于传感器的有限视场(FOV)。二维粗糙度模型被删除,以提取特征点,以进行点云的精细匹配和注册。此外,姿势估计器会参与时间运动预测变量,该预测器有助于在地图中找到特征对应关系,以便非线性优化器的快速收敛性。我们已经通过一系列广泛的实验验证了所提出的自我运动估计和映射方法,这些实验从远程诉讼,手工接种到无人机连接设置。在整个实验中,探索了不同的环境,例如室内实验室,办公室,家庭和工业地点以及各种混合条件。表明,这些方法能够进行高精度,低延迟估计以及快速运动和环境退化方面的鲁棒性。