Loading...
机构名称:
¥ 1.0

Cyber​​sickness是与虚拟现实(VR)用户体验相关的常见疾病。基于机器学习(ML)和深度学习(DL)的几种自动化方法,以检测网络病。但是,这些Cyber​​sickness检测方法中的大多数被视为计算密集型和黑盒方法。因此,这些技术既不值得信赖,也不是实用的,因为它可以在独立的能源受限的VR头部安装设备(HMD)上。在这项工作中,我们提出了可解释的人工智能(XAI)基于Cyber​​sickness检测的框架LiteVR,解释了模型的结果,降低了功能维度和整体计算成本。首先,我们基于长期短期记忆(LSTM),门控复发单元(GRU)和多层感知器(MLP)开发了三个Cyber​​sickness DL模型。然后,我们采用了事后解释,例如Shapley添加说明(SHAP),以解释结果并提取Cyber​​sickness的最主要特征。最后,我们以减少的功能数量重新训练DL模型。我们的结果表明,引人注目的特征是Cyber​​sickness Declection的最主要的。此外,基于基于XAI的功能排名和降低维度,我们显着将模型的大小降低了4.3倍,训练时间最高为5.6倍,其推理时间最高为3.8倍,最高可降低Cyber​​sick Nessick Nespection tection coctection tection coctiction Percipation Percipation和低回归误差(即快速运动尺度)(FMS)。我们提出的LITE LSTM模型在分类网络病和回归(即FMS 1-10)中获得了94%的精度,其根平方误差(RMSE)为0。30,表现优于最先进的。我们提出的LITEVR框架可以帮助研究人员和从业人员在独立的VR HMD中分析,检测和部署其基于DL的Cyber​​sickness检测模型。

liteVr:使用可解释的AI

liteVr:使用可解释的AIPDF文件第1页

liteVr:使用可解释的AIPDF文件第2页

liteVr:使用可解释的AIPDF文件第3页

liteVr:使用可解释的AIPDF文件第4页

liteVr:使用可解释的AIPDF文件第5页

相关文件推荐

2025 年
¥1.0
2024 年
¥2.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥7.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2022 年
¥3.0
2024 年
¥2.0
2024 年
¥1.0