目的:记录 (1) 评估时有症状的脑震荡儿童的眼球运动 (OM) 和前庭眼 (VO) 功能,并将其与临床康复(无症状)的脑震荡儿童和无脑震荡损伤的儿童进行比较,以及 (2) OM 和 VO 功能与受伤儿童脑震荡后症状严重程度的关系程度。 设置:参与者是从脑震荡诊所或社区招募的。 参与者:总共 108 名脑震荡青少年(72 名有症状;36 名康复)和 79 名健康青少年(年龄 9-18 岁)。如果脑震荡青少年年龄在 9 至 18 岁之间,在过去 12 个月内没有发生过脑震荡,受伤后不到 90 天,并且没有已知的现有视觉障碍或学习障碍,则将其纳入。 研究设计:一项前瞻性横断面研究。主要指标:所有参与者均使用商用虚拟现实 (VR) 眼动追踪系统 (Neuroflex ®,加拿大魁北克省蒙特利尔) 测试 OM 和 VO 功能。脑震荡组完成脑震荡后症状测试的参与者使用脑震荡后症状量表进行评分。结果:平稳追踪期间的会聚 (F 2,176 = 10.90;P < .05)、扫视期间的平均潜伏期 (F 2,171 = 5.99;P = .003) 和反扫视期间的平均反应延迟 (F 2,177 = 9.07;P < .05) 存在显著的群体效应,其中有症状脑震荡的儿童表现比临床康复和健康的儿童差。在水平向左(F 2,168 = 7;P = .001)和向右(F 2,163 = 13.08;P < .05)以及垂直向上(F 2,147 = 7.60;P = .001)和向下(F 2,144 = 13.70;P < .05)方向的平均前庭眼反射增益方面,VO 也发现了相似的结果。在临床康复的幼儿中,平均扫视误差与脑震荡后症状量表总分呈正相关。结论:VR 眼动追踪可能是识别脑震荡后亚急性期(< 90 天)OM 和 VO 缺陷的有效工具。关键词: 角前庭眼反射、眼球追踪、轻度创伤性脑损伤、眼球运动、脑震荡后症状量表、前庭眼、虚拟现实
仅给健康动物接种疫苗。疫苗接种对感染的进一步阶段、已形成的淋巴结脓肿的破裂、随后的带菌者身份的流行、杂种马鼻疽(转移性脓肿)、出血性紫癜和肌炎以及恢复的影响尚不清楚。已证明,疫苗可减轻单匹马在感染急性期的临床症状。接种疫苗的马匹可能会感染并排出马链球菌。目前没有关于在血清阳性动物(包括具有母源抗体的动物)中使用该疫苗的信息。无论是否接种了本产品,都应将限制马链球菌感染在场所内引入和传播风险的生物安全程序作为管理工具的一部分。4.5 特殊使用预防措施 动物使用特殊预防措施 经测试,该疫苗可安全用于 5 月龄以上的马匹。给动物注射兽药的人员应采取的特殊预防措施 如不慎自我注射,应立即就医并向医生出示包装说明书或标签。 可能会发生过敏反应。对症治疗。 4.6 不良反应(频率和严重程度) 接种疫苗后,体温短暂升高高达 2.6°C,持续 1 至 5 天是很常见的。注射部位很常见短暂的局部组织反应,其特征是发热、疼痛和肿胀(直径约 5 厘米),持续长达五天。在第二次主要剂量和后续剂量后,注射部位反应的频率更加明显,并且可能出现直径高达 8 厘米的肿胀。一天内食欲不振和举止改变是常见的。接种疫苗后 1 至 5 天内,双眼经常出现眼部分泌物,可能是粘液脓性分泌物。极少数情况下会出现类似过敏反应。不良反应发生的频率采用以下惯例定义: - 非常常见 (每 10 只接受治疗的动物中超过 1 只出现不良反应) - 常见 (每 100 只接受治疗的动物中超过 1 只但少于 10 只动物) - 不常见 (每 1,000 只接受治疗的动物中超过 1 只但少于 10 只动物) - 罕见 (每 10,000 只接受治疗的动物中超过 1 只但少于 10 只动物) - 非常罕见 (每 10,000 只动物中少于 1 只动物,包括个别报告) 4.7 怀孕、哺乳或非怀孕期间使用怀孕和哺乳:
立即发布 PR 36/2021 2021 年 3 月 7 日 COVAX 运送的 COVID-19 疫苗抵达斐济 苏瓦 - 斐济成为太平洋岛屿中第一个通过 COVAX 设施接收 COVID-19 疫苗的国家,该设施是 CEPI、Gavi、联合国儿童基金会和世卫组织合作建立的。这是实现确保全球公平分配 COVID-19 疫苗目标的历史性一步,这将是历史上规模最大的疫苗采购和供应行动。 12,000 剂牛津-阿斯利康新冠疫苗的抵达,是 COVAX 机制运抵太平洋地区的首批疫苗,该机制旨在到 2021 年底前提供至少 20 亿剂新冠疫苗。斐济总理乔萨亚·沃雷克·姆拜尼马拉马昨天晚上在楠迪机场接收疫苗时表示,这是保护斐济人免受已在世界各地夺走数百万人生命的瘟疫侵害的一小步,但却是重要的一步。姆拜尼马拉马总理说:“这些疫苗不仅代表着恢复正常生活;它们是我们的经济、我们的产业以及成千上万的斐济养家糊口者所需要的生命之针。这关乎恢复就业机会、重新联系跨境家庭以及重新夺回斐济在世界上的应有地位。”姆拜尼马拉马总理补充道,我们能够确保斐济人民健康和福祉的唯一方法是与世界其他国家的人一起接种疫苗。此外,在 digitalFiji 的框架下,在线注册门户将确保在全国范围内顺利推出疫苗接种。全球疫苗免疫联盟首席执行官 Seth Berkley 博士强调,“COVAX 的使命是帮助尽快结束大流行的急性期,让全球公平获得 COVID-19 疫苗。” “这些疫苗的成功到来是全球团结与伙伴关系的产物,也是认识到我们需要为世界每个角落处于大流行前线和最脆弱人群接种疫苗,以确保世界各个角落的安全,”联合国儿童基金会太平洋代表 Sheldon Yett 表示。“我们感谢斐济政府的领导,也感谢我们的合作伙伴使这一切成为可能。”
血管活性药物茶碱在动物中风模型中表现出良好的神经保护作用,可减少脑组织水肿、脑损伤和死亡率(1-3),但之前的随机临床试验中的结果存在争议(4、5)。急性缺血性中风试验旨在克服之前试验的局限性,即缺乏急性缺血性中风验证、缺乏血运重建治疗和干预延迟(6)。总共 64 例经 MRI 证实的急性缺血性中风患者被随机分配接受单次 220 毫克茶碱或安慰剂输注,作为溶栓疗法的辅助治疗。共同主要终点是早期临床改善,定义为从基线到 24 小时随访时 NIHSS 评分的变化。茶碱组改善了 4.7 分(标准差 [SD] 5.6),而单纯溶栓治疗组改善了 1.3 分(SD 7.5)(p=0.04)(7)。共同主要终点是 24 小时随访时梗塞生长,茶碱组为 141.6%(SD 126.5),对照组为 104.1%(SD 62.5)(p=0.15)。虽然单独的临床终点可以显示出统计学上显著的早期改善,但由于有两个主要终点,经过多重检验校正后被认为不具有统计学意义。关于成像终点,比较两个样本量较小且中风病变体积差异较大的独立组可能会阻止检测到茶碱的微小影响。因此,预先计划了一种预测后续病变的机器学习方法作为亚组分析。该方法的基本思想是基于在急性期获取的逐体素图像数据和已知的后续病变信息来训练两个机器学习模型。因此,可以为每位患者量化两个预测的后续病变体积,一个病变结果用于茶碱虚拟治疗,一个病变用于安慰剂虚拟治疗,这实际上使可用于统计检验的结果测量值增加了一倍。本研究的目的是利用这种预测模型方法来比较接受茶碱和安慰剂作为溶栓疗法辅助治疗的患者的后续病变体积,以调查茶碱在个别患者中是否存在细微的治疗效果,而在比较小组中的病变体积时这种效果并不明显。
背景:及时准确的结果预测在指导急性缺血性卒中的临床决策中起着至关重要的作用。急性期后的早期病情恶化和严重程度是长期结果的决定因素。因此,预测早期结果在急性卒中管理中至关重要。然而,解释预测并将其转化为临床可解释的概念与预测本身一样重要。目的:这项工作专注于机器学习模型分析在预测缺血性卒中早期结果中的应用,并使用模型解释技巧来解释结果。方法:招募 2009 年在长庚医疗系统卒中登记处 (SRICHS) 登记的急性缺血性卒中患者,对两个主要结果进行机器学习预测:出院时的改良 Rankin 量表 (mRS) 和住院期间病情恶化。我们将 4 种机器学习模型,即支持向量机 (SVM)、随机森林 (RF)、轻梯度提升机 (LGBM) 和深度神经网络 (DNN) 与受试者工作特征曲线的曲线下面积 (AUC) 进行了比较。此外,3 种重采样方法,即随机欠采样(RUS)、随机过采样和合成少数过采样技术,处理了不平衡数据。模型基于特征重要性排序和 SHapley 加性解释(SHAP)进行解释。结果:RF 在两种结果中均表现良好(出院 mRS:平均 AUC 0.829,SD 0.018;院内恶化:原始数据上的平均 AUC 0.710,SD 0.023,对于不平衡数据,使用 RUS 重采样数据上的平均 AUC 0.728,SD 0.036)。此外,DNN 在预测未重采样数据的院内恶化方面优于其他模型(平均 AUC 0.732,SD 0.064)。总体而言,重采样对使用不平衡数据预测院内恶化的模型性能的改善有限。从美国国立卫生研究院卒中量表 (NIHSS) 获得的特征、白细胞分类计数和年龄是预测出院 mRS 的关键特征。相反,NIHSS 总分、初始血压、是否患有糖尿病以及血象特征是预测住院期间病情恶化的最重要特征。SHAP 摘要描述了特征值对每个结果预测的影响。结论:机器学习模型在预测早期卒中结果方面是可行的。丰富的特征库可以提高模型性能。初始神经系统水平和年龄决定了出院时的活动独立性。此外,
炎症性疾病由多种以炎症为特征的疾病和病症组成,例如炎症性肠病、肝炎和类风湿性关节炎(Okin et al., 2012)。在炎症性疾病的病理条件下,免疫系统错误地攻击健康细胞或组织,导致慢性疼痛、发红、肿胀、僵硬和身体损伤(Marchetti et al., 2005)。炎症性疾病与多种潜在原因有关,包括饮食、压力和睡眠障碍。抗炎药物有助于预防或减少疾病进展。然而,常用药物经常伴有严重的不良反应。迫切需要开发新的炎症性疾病治疗方法并阐明关键基因和内在机制。诊断生物标志物在患者的诊断和治疗过程中的多个方面对疾病的治疗有用。炎症生物标志物多种多样,包括细胞因子/趋化因子、急性期蛋白、免疫相关效应物、活性氧和氮物质、前列腺素和环氧合酶相关因子、转录因子和生长因子 ( Brenner et al., 2014 )。Lin et al. 证明肠粘膜中的 lncRNA DLEU2 在肠道炎症时失调,可以作为溃疡性结肠炎的诊断生物标志物 ( Lin et al. )。他们将 DLEU2 鉴定为一种抗炎 lncRNA,通过负向调节 NF- κ B 信号通路来抑制肠道炎症 ( Lin et al. )。Huang et al.报道称,MHR(单核细胞与高密度脂蛋白的比率)和MAR(单核细胞与载脂蛋白A1的比率)是理想的促炎症标志物,可影响绝经后2型糖尿病女性骨微环境中由慢性炎症引起的骨稳态失衡(Huang et al.)。这些研究人员将生物标志物的研究课题扩展到炎症疾病。找到正确的治疗靶点是抗炎药物研发中最重要的方法。许多靶点负责抗炎作用,例如抑制细胞因子信号传导、降低白细胞活化、趋化性和募集。研究人员已经在这个研究课题中确定了几个靶点。K-Ras是一个研究得比较深入的致癌基因。Qi et al.报道称,抑制 K-Ras G13D 突变可通过 RAS/ERK 通路促进癌症干性和炎症 ( Qi et al. )。这一发现可能对理解 K-Ras G13D 突变对促进癌症干性和炎症的影响,在使用 K-Ras G13D 靶向疗法时具有重要意义
背景和目的:糖尿病与抑郁和焦虑密切相关。随着 2019 年冠状病毒病 (COVID-19) 大流行,普通人群中精神健康问题的患病率似乎正在迅速上升 (1)。因此,我们评估了 COVID-19 大流行封锁阶段儿童 1 型糖尿病 (T1D) 患者及其护理人员的心理健康状况。我们的目标是将 T1D 青少年及其护理人员的抑郁和焦虑水平与健康对照组进行比较。我们假设在 COVID-19 大流行期间,T1D 青少年的抑郁和焦虑水平会高于健康对照组(目标 1)。我们还探讨了 T1D 患者抑郁/焦虑增加的潜在原因(目标 2)。我们旨在进一步了解 COVID-19 大流行期间 T1D 患者的社会心理健康状况,并确定在全球危机中支持这一人群的机制。方法:田纳西州居家隔离令开始一周后,我们进行了 15 分钟的电话调查,以筛查 1 型糖尿病儿童家庭(n=100,儿童平均年龄=13.8 岁,平均糖化血红蛋白=8.95%,种族=高加索人(55%)/非裔美国人(43%))和健康儿童(儿童平均年龄=5.7 岁,种族=高加索人(24%)/非裔美国人(69%))的焦虑和抑郁症状况。通过标准评估工具患者健康问卷 (PHQ-4) 评估抑郁和焦虑情况,这是一份 4 项清单,采用 4 点李克特量表评分,可简要评估抑郁和焦虑。根据 1 型糖尿病状态使用卡方检验或 t 检验(视情况而定)比较焦虑/抑郁相关变量。使用调整了潜在混杂因素的逻辑回归检查 1 型糖尿病与焦虑和抑郁风险之间的关联。对于患有 1 型糖尿病 (T1D) 的家庭,我们提出了额外的问题,以确定与 1 型糖尿病护理相关的具体问题。结果:与对照组相比,在多变量调整模型中,1 型糖尿病患者的焦虑风险高出 5 倍,OR=5.02(95% 置信区间:1.83,14.84),P=0.002。此外,52 个 1 型糖尿病 (T1D) 家庭中有 26 个(50%)非常担心自己因 1 型糖尿病而面临更高的严重 COVID-19 感染风险,52 个 1 型糖尿病 (T1D) 家庭中有 14 个(27%)担心无法获得胰岛素和糖尿病用品。结论:在 COVID-19 大流行的急性期,儿童 1 型糖尿病 (T1D) 与焦虑风险增加有关,但与抑郁无关。COVID-19 大流行期间 1 型糖尿病患者焦虑情绪升高
严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 感染的特征是发展为一种复杂的疾病 (COVID-19),具有广泛的呼吸道 [ 1 ] 和非呼吸道 [ 2-4 ] 症状,可能导致患者病危和死亡 [ 5 ]。免疫系统通过先天反应和适应性反应对病毒作出反应。先天系统通过募集专门的免疫细胞(如浆细胞样树突状细胞和巨噬细胞)来对 SARS-CoV-2 作出反应,而适应性免疫系统主要包括产生抗体的 B 细胞以及具有辅助和效应功能的 CD4 + 和 CD8 + T 细胞(CD4 + )[ 6,7]。适应性免疫的体液和细胞成分在疾病消退和防止感染或再感染方面都发挥着独特且互补的作用。在 Sekine 等人的一项精彩研究中。 [ 8 ],SARS-CoV-2 特异性 T 细胞已在无症状至轻度疾病的急性和恢复期未接种疫苗患者中得到表征。作者报告称,虽然在 SARS-CoV-2 感染的早期急性期,CD8 + T 细胞群主要表达免疫激活和细胞毒分子以及抑制性受体,但在恢复期,SARS-CoV-2 特异性 T 细胞偏向早期分化记忆表型 [ 8 ]。因此,从接触病毒到出现特异性记忆细胞的时间决定了针对 SARS-CoV-2 的特异性记忆细胞的出现 [ 8 ]。另一项针对未接种疫苗的患者的研究进一步证实,SARS-CoV-2 特异性 T 细胞也存在于无症状 SARS-CoV-2 感染期间,其初始干扰素-γ (IFN γ ) 分泌 T 细胞计数与重症 COVID-19 患者相似 [ 9 ]。抗 SARS-CoV-2 疫苗是预防危重 COVID-19 的最重要策略 [10]。最初,BNT162b2 疫苗接种包括两剂连续的 mRNA 剂量,间隔 21 天 [11]。第一轮疫苗接种会诱导特异性体液和细胞免疫反应,经证实对 95% 的未接种个体有效 [12]。然而,双剂量 BNT162b2 疫苗诱导的免疫反应会在数月内减弱,因此有必要接种“加强”剂量 [10、13、14],尤其是在免疫抑制患者中 [15]。即使最近接种了疫苗,高龄或患有合并症的患者也有住院和危重 COVID-19 的报道 [16],并且疫苗接种的有效性会随着时间的推移而减弱 [14]。这些患者尽管抗 Spike IgG 滴度较高,但全血 IFN γ 释放量较低 [16]。另一项研究表明,与年轻病例相比,BNT162b2 mRNA 疫苗在未感染 COVID 的老年人中产生的免疫反应不同(即较差)(包括分泌 IFN γ 的 T 细胞计数)[17]。
意识障碍是认知障碍的主要症状和症状表现,包括意识障碍(DoC)和微意识状态(MCS)。临床上常见的认知障碍患者急性期病情往往十分危急,远期预后差异很大,给家庭和社会带来沉重的负担(2、3)。对脑功能损害的早期评估、预后和选择适当的治疗策略尤其具有挑战性。认知障碍常被误诊,对预后和治疗有较大影响(4-6)。常用的认知障碍诊疗工具可分为临床行为检查和客观检查。行为评估被认为是认知障碍患者诊断和预后的“金标准”,但其完整性和临床实用性尚未得到充分证明(7)。神经影像学和电生理学工具,如脑电图 (EEG)、磁共振成像 (MRI)、正电子发射断层扫描 (PET) 和经颅磁刺激 (TMS) 与 EEG 相结合,对诊断 DoC 具有高度准确性和可靠性( 8-10 )。在我们的文献计量分析中,我们发现与 EEG 相关的研究数量明显高于其他技术。这导致我们主要关注 EEG,以确保全面深入的审查。EEG 是一种非侵入性、经济有效且易于获取的神经监测工具,可用于评估、诊断和预后 DoC 患者( 11 )。自从 1942 年被 W. Grey Walter 重新用作实用的诊断辅助工具以来,EEG 通常用于诊断和预后早期康复的 DoC 患者( 12,13 )。 2020 年,欧洲神经病学学会在《昏迷和其他意识障碍诊断指南》中肯定了脑电图对外界刺激反应性的诊断和预后价值(3)。近年来,脑电图在意识障碍评估中的应用受到了广泛关注。先前的研究发现,高密度脑电图可以提高定位精度(14)。此外,基于脑电图的脑机接口系统可以为意识障碍患者提供交流和控制(15)。高频振荡作为一种新兴的癫痫诊断生物标志物已引起人们的关注,尽管还需要进一步验证才能用于临床应用。此外,电源成像是一种准确且具有临床应用的多模式工具,可用于药物耐药性局灶性癫痫的术前评估(16)。文献计量学涉及应用数学和统计技术来量化和分析文献量,从而阐明学科的发展特点。鉴于公众对该领域最新进展的兴趣日益浓厚,相应的文献计量分析明显缺失。因此,我们已着手收集和分析相关文献,以勾勒出 DOC 的 EEG 评估轨迹。我们的目标是为临床应用提供更好的指导(17)。
中风对幸存者的生活产生了深远的影响,从而导致了影响其生活质量的众多功能障碍和定义(Wolfe,2000; Rand and Eng,2015)。估计有80%的中风幸存者在恢复的早期阶段会遭受某种形式的上肢障碍,剩下约50%的慢性障碍(Wade,1989)。这些糟糕的势后结果不是由于生物学的限制,而是由于缺乏适当的治疗而引起的,正如最近的高强度/高剂量研究所证明的那样(Ward等,2019; Mawase等,2020; Ballester等,2022)。因此,常规的中风后神经居住(当前的护理标准)使患者的康复潜力不足。由于以下原因,印度这样的发展中国家可能会更加紧迫: Al。,2018),(d)患者和护理人员对神经居住的认识不足(Kamalakannan等,2016),以及(e)(e)在大多数患者中使用神经居民服务的财务限制 - 截至2014年 - 截至2014年,只有10%的人口,只有10%的人口保险(Kumar et a al al al al an al an al and al.201)。这些因素限制了患者与医疗保健系统的正式接触。尤其是在急性/亚急性期浪费了中风后有价值的敏感恢复期(Dromerick等,2021)。在家中或在社区中进行的分散疗法可以增加治疗剂量。因此,毫不奇怪,基于家庭的康复是中风后常规神经居住不可或缺的一部分。一种基于纸张的家庭治疗方法是一种规范,在该方法中,对患者/看护人进行了培训,并给出了印刷的讲义,详细介绍了一组练习/任务以在家中独立执行(Jack等,2010; Cheiloudaki和Alexopoulos,2019; Pishkhani et al。,2020)。在这些家庭治疗计划期间与训练有素的临床医生接触仅是间歇性的,并阻止患者和护理人员定期收到有关治疗进展的反馈。这通常会导致较低的治疗依从性和较高的辍学率,并遵守这些基于家庭的练习,据报道低至28%(Mahmood等人,2020年)。目前的景观强调了对家庭康复的创新解决方案的迫切需求。康复机器人技术技术是一个有前途的选择。机器人促进了强烈的高剂量辅助运动训练,使治疗通过计算机游戏更具吸引力,可以提供定期的反馈,跟踪治疗进度,并允许通过间歇性治疗师的监督进行治疗。但大多数现有的康复机器人都是为医院或实验室环境而设计的(Turchetti等,2014; Qassim和Wan Hasan,2020年),由于机器人的尺寸和有限的可移植性,因此对家庭治疗的选择很少。在这些有限的选择中,没有在家庭环境中进行评估,以了解印度机器人辅助家庭治疗的可行性。