纳米光子学中的量子点(QD)耦合已广泛研究量子技术中的各种潜在应用。微型安排也吸引了大量的研究兴趣,因为它使用微型机器人工具来进行精确的受控运动。在这项工作中,我们将荧光QD和磁性纳米颗粒(NP)结合在一起,以实现多功能微生物结构,并通过外部磁场在3D空间中证明了耦合的单光子源(SPS)的操纵。通过使用低一个光子吸收(LOPA)直接激光写作(DLW)技术,在包含单个QD的2D和3D磁电脑器件的制造上是在包含胶体CDSE/CDSE/CDSE QDS,磁铁fe 3 o 4 nps和su-8 photoresist的混合材料上进行的。研究了两种类型的设备,即无接触式和接触式结构,以证明其磁性和光辐射反应。设备中的耦合SP由外部磁场驱动,以在3D流体环境中执行不同的运动。表征了设备中单个QD的光学特性。
摘要:本文通过Zns薄膜和波导的结构和光学特征,介绍了二阶非线性光子学对二阶非线性光子学的优势。1。引言是由物质辐射相互作用引起的非线性光学现象,这已经得到了很大改善,这已经大大改善了光子设备的开发,可以在基于非线性光学材料的指导结构内强限制电磁场。[1]。到目前为止,只有很少的研究集中在硫化锌(ZNS)上。这种材料对于非线性光学元件来说是有希望的,因为它是电信波长[2]的高折射率,透明度的宽光谱,高第二[3]和三阶非线性系数[4]和多晶结构,并且有可能充分利用非线性过程[5]。从应用的角度来看,ZnS沉积方法的种类(其中一些是低成本)也代表了有趣的技术优势。在这项工作中,我们描述了由磁控溅射沉积的ZnS薄膜的结构和光学特性,以及第一个基于ZnS的波导的制造过程及其线性表征。
振动极性子是通过光腔中分子振动和光子模式的强耦合形成的。实验表明,振动强耦合可以改变分子特性,甚至会影响化学反应性。然而,分子集合中的相互作用是复杂的,并且尚未完全了解导致修饰的确切机制。我们基于双量子相干技术模拟了分子振动极化子的二维红外光谱,以进一步深入了解这些混合光 - 制成状态的复杂多体结构。双重量子相干性独特地分辨出杂交光 - 偏振子的激发,并允许人们直接探测所得状态的非谐度。通过将腔体出生的腔体 - oppenheimer hartree -fock ansatz与相应特征状态的完整量子动力学模拟结合在一起,我们超越了简化的模型系统。这使我们能够研究自动极化的影响以及电子结构对腔体相互作用在光谱特征上的响应,甚至超出了单分子情况。
摘要:如今,由于其高稳定性和诱变性,芳香物质受到的环境污染已成为一个关注点。在这方面,研究人员将注意力集中在11的光催化过程的发展上,以将硝化化合物转化为苯胺。在这项工作中,研究了硝基苯(NB)到苯胺(AN)的光催化转化。使用商业TIO 2(P25)和基于嵌入在syndiotictic Polystyrene(SPS)气凝胶(SPS/P25气凝胶)的P25的光催化气凝胶14的光催化气凝胶14作为光催化反应进行。在光催化实验期间,将不同的酒精用作氢源。在16时,优化的工作条件(光催化剂剂量:0.5 mg/l和50%(v/v)eTOH%),达到了17个收益率高99%。根据结果,这项工作开辟了一种有效的方法18,使用与SPS/P25气凝胶的轻度反应条件一起生产NB,鉴于可能对光催化过程的扩展为19。20
I16 是一条位于 Diamond Light Source 的高通量、高分辨率 X 射线光束线。该光束线工作在 2.7-15 KeV 范围内,是一种专为研究单晶样品的共振和磁散射过程而优化的衍射设备 [1]。共振弹性 X 射线散射是表征材料的电子、磁性和结构特性的理想选择,因为它对原本较弱的散射过程具有增强的灵敏度,可提供光谱信息和化学选择性。I16 的主仪器是一台大型 6 圆 K 衍射仪,能够适应各种辅助环境。该光束线可完全控制其大部分能量范围内的入射光子偏振。它与大光子计数面积探测器和安装在 K 衍射仪上的真空线性偏振分析仪相结合,用于隔离和增强与有序现象相关的特定散射过程。
常规激光器通常支持良好的模式梳子。将许多谐振器耦合在一起形成较大的复杂腔,可以设计模式的空间和光谱分布,以实现敏感和可控制的片上光源。网络激光器由染料掺杂聚合物互连的波导形成,尽管与增益漂白具有高度敏感和可定制的激光光谱,但具有随机激光的巨大潜力。此处介绍了片上半导体网络激光器,并通过将键入的INP结合键入粘合到SIO 2∕Si Wafer上,作为可重现,稳定且可设计的随机激光器,具有丰富的多态光谱和较低的室温和室温较低的室温。阈值低至60°JCM -2脉冲-1。在实验和数字上进一步显示,网络密度直接影响模式空间分布,并且在大型密集网络中仅在10-20个连接的链路上将激光模式定位在空间上。INP网络激光器也稳定以泵送照明,并对泵图案中的小变化敏感。这些研究为在强大的半导体平台中量身定制的随机激光器的未来设计奠定了基础,对感应,信号处理,密码和机器学习产生了影响。
频带级联激光器(ICL)由于低功耗和与硅光子整合的兼容性,尤其是对于痕量气体传感,因此在中红外应用中变得越来越有价值。ICL已在3 - 6 L m范围内证明了室温连续波动,其性能在3.3 L m左右。在更长波长下ICL性能的关键因素是光损失,即是由间隔带过渡引起的。这些损失随着活性区域的孔浓度而增加,从而导致ICL中光损耗的电流依赖性明显。传统方法从参数(例如斜率效率或阈值电流)中从长度依赖性变化中推断出光损失需要恒定光损耗。在这项研究中,我们提出了一种直接的光学传输测量技术,以确定波导损耗。我们的实验证实,随着电流密度,大大增加了波导损失,直接影响ICL的量子效率。与传统方法相比,这种方法提供了对光损失的精确评估,并具有功能替代性,可以解决假设恒定损失的局限性,并为各种波长提供了对ICL性能的洞察力。
从《新闻与观点》类别中发表的《新闻与观点》类别的此项目:科学与应用程序旨在提供最近在参考文献中发表的理论和实验结果的摘要。[24],它证明了高阶拓扑 - 绝缘子(HOTI)类型的非线性光学波导中的角模式的创建。实际上,这些是二阶Hotis,其中拓扑保护的边缘模式的横向尺寸小于2的散装尺寸(在光向指导的情况下为2),这意味着被保护模式的零维数,实际上是在角落或缺陷的尺寸。工作[24]报告了具有分形横向结构的Hoti中各种形式的角模式的预测和创建,由Sierpiński垫圈(SG)表示。波导材料的自我关注的非线性将角模式转化为角孤子,几乎所有这些都稳定。孤子可以连接到基础SG产生的外部或内部角落。此N&V项目概述了参考文献中报告的这些新发现。[24]和其他最近的作品,以及有关该主题进一步工作的方向的简要讨论。
图形语言对于表示,改写和简化不同种类的过程非常有用。,它们已被广泛用于量子过程,改善了汇编,模拟和验证的最新技术。在这项工作中,我们专注于量子信息和计算的主要载体之一:线性光电电路。我们介绍了Lo fi -calculus,这是第一种图形语言,用于在无限尺寸光子空间上进行电路,其电路仅由线性光学元件的四个核心元素组成:相位变速器,梁隔板,辅助源,辅助源和探测器,并具有有界光子的数量。首先,我们研究由相位变速器和光束拆分器组成的电路的亚碎片,为此我们提供了第一个最小的方程理论。接下来,我们在收敛到正常形式的那些fi循环上引入了一个重写过程。我们证明这些形式是独特的,可以建立线性光学过程的新颖和独特的表示。最后,我们通过一种方程理论补充了语言,我们被证明是完整的:两个lo fi -circuits代表相同的量子过程,并且仅当一个可以通过lo fi -calculus的规则转化为另一个。