大胞饮作用是癌细胞的标志之一,而大多数健康细胞都不具有大胞饮作用。6-8 研究发现,特定形状的纳米粒子可以显示出癌细胞对大胞饮作用途径的偏好。9 例如,我们 3 和其他人 10 已经证明,与短或长纳米棒和纳米球相比,尺寸为 180 nm 60 nm 的介孔二氧化硅纳米棒通过大胞饮作用途径被吸收的数量更多。重要的是,这些研究是在没有任何药物输送的情况下进行的。此外,大胞饮作用途径最近作为实现核药物输送的一种策略引起了人们的关注。7,11-17 有人认为大胞饮作用可导致高比率的内体和溶酶体逃逸,18,19 因此对于有效地向细胞输送药物至关重要。 20 结合这两个概念,开发仅通过内吞作用进入细胞的载药纳米粒子不仅可以成为一种针对癌细胞而非健康细胞的手段,还可以用来指导药物在细胞中的释放位置。在本研究中,我们展示了如何使用纳米棒将抗癌药物输送到癌细胞的细胞核,以便在健康乳腺细胞存在的情况下选择性地杀死癌细胞,这在以前没有报道过。内吞化学抑制剂被广泛用于研究纳米粒子的吸收途径。5 通常在添加纳米粒子之前用抑制剂预处理细胞。然后将纳米粒子进入抑制剂处理的细胞的吸收与进入细胞的吸收进行比较
神经反馈 (NFB) 是一种操作性条件反射程序,通过该程序,个体可以学会自我调节大脑的电活动。NFB 最初是作为治疗潜在脑电图功能障碍的疾病的干预措施而开发的,现在也被用作一种训练工具,以增强高性能情况下所需的特定认知状态。NFB 训练效果背后的最初想法是,变化应该仅限于训练过的脑电图频率。不用作反馈频率的脑电图频率应该是独立的,不受神经反馈训练的影响。尽管感觉运动节律 NFB 训练在认知表现增强方面取得了成功,但目前尚不清楚所有参与者是否都可以有意修改特定选择的脑电图 (EEG) 频率的功率密度。在本研究中,参与者被随机分配到控制心率变异性 (HRV) 生物反馈 (HRV) 训练组或 HRV 生物反馈和神经反馈 (HRV/NFB) 训练组。这项随机混合设计实验包括两节入门理论课和为期 6 周的训练期。我们研究了两个实验组在训练期间和训练期间不同脑电图频带的变化。所有参与者在训练期间和训练期间都表现出脑电图变化。然而,在 HRV/NFB 训练组中,未训练的脑电图频率发生了显著变化,而一些训练过的频率则不同。此外,HRV 组和 HRV/NFB 组的脑电图活动都发生了变化。因此,脑电图变化不仅限于训练过的频带或训练方式。
活性依赖性转录因子MEF2C中的突变与几种神经精神疾病有关。在其中表现出自闭症谱系障碍(ASD)相关的行为置换。具有MEF2C突变的多种动物模型提供了令人信服的证据,表明MEF2C确实是ASD基因。然而,对MEF2C种系或全球脑敲除的小鼠的研究的能力有限,可以识别表达MEF2C介导的ASD行为所需的精确神经底物和细胞类型。鉴于海马神经发生在认知和社会行为中的作用,在这项研究中,我们旨在研究MEF2C在新近产生的齿状颗粒细胞(DGC)中的作用和功能中的作用。MEF2C(MEF2C OE)的过表达在祖细胞阶段捕捉了神经发生的过渡,如MEF2C OE DGC中SOX2 +的持续表达所表明。MEF2C(MEF2C CKO)的条件敲除允许MEF2C CKO细胞的神经元承诺;但是,MEF2C CKO不仅损害了树突状植物和脊柱形成,而且还损害了MEF2C CKO DGC的突触传播。此外,MEF2C CKO的异常结构和功能
为了应对这一挑战,Guénard教授一直领导一支国际团队在十多年内组装近16,000种蚂蚁物种的分销数据。蚂蚁是最广泛和生态上占主导地位的昆虫之一,加权是Guénard教授先前的一项研究中所示的野生鸟类和哺乳动物的两倍。对于昆虫群体,它们有相对有据可查的文献。Guénard教授团队的辛勤工作汇编了300多年来对蚂蚁研究的数据,使使用包括生物信息学和机器学习在内的先进技术可以预测和分析其分布。最后,他们能够生成第一个蚂蚁的生物地理图。
皮层刺激正在成为基础研究中的实验工具,也是治疗一系列神经精神疾病的有前途的疗法。随着多电极阵列进入临床实践,使用电刺激的时空模式来诱导所需生理模式的可能性在理论上已成为可能,但在实践中,由于缺乏预测模型,只能通过反复试验来实现。越来越多的实验证据证实,行波是皮层信息处理的基础,但尽管技术迅速进步,我们仍缺乏对如何控制波特性的理解。本研究使用混合生物物理解剖学和神经计算模型来预测和理解简单的皮层表面刺激模式如何通过抑制性中间神经元的不对称激活来诱导定向行波。我们发现锥体细胞和篮状细胞被阳极电极高度激活,被阴极电极激活的程度最低,而马丁诺蒂细胞被两个电极适度激活,但对阴极刺激略有偏好。网络模型模拟发现,这种不对称激活会导致浅表兴奋性细胞中产生行波,该行波会单向传播,远离电极阵列。我们的研究揭示了不对称电刺激如何通过依赖两种不同类型的抑制性中间神经元活动来塑造和维持内源性局部电路机制的时空动态,从而轻松促进行波。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
带有检查点抑制剂的抽象背景免疫疗法,尤其是那些针对编程的死亡受体1(PD-1)/PD-1配体(PD-L1)的免疫疗法,越来越多地被认为是恶性肿瘤的高度有希望的治疗方式。然而,限制了免疫检查点阻滞治疗在治疗胶质母细胞瘤(GBM)中的效率。因此,必须扩大我们对GBM免疫逃逸(IE)背后的分子机制的理解。进行蛋白质芯片分析以在PD-1抑制剂敏感或抗性GBM中异常表达的OMA1蛋白筛选。在此,采用了公共数据库和生物信息学分析来研究OMA1和PD-L1关系。然后,通过不同的实验方法在初级GBM细胞系中验证了这种预测的关系。在免疫抑制中研究OMA1背后的分子机制,采用了一系列实验方法,包括蛋白质印迹,共免疫沉淀(CO-IP),质谱法(MS),免疫荧光,免疫荧光,免疫组织,免疫组织化学和QRT-PCR。结果我们的发现表明,OMA1竞争性结合HSPA9以诱导线粒体并介导GBM的IE。来自TCGA的数据表明OMA1与免疫抑制之间存在显着相关性。OMA1促进了GBM患者的原代细胞中的PD-L1水平。接下来,在GBM原代细胞上进行的Co-IP和MS的结果表明OMA1与HSPA9相互作用并诱导线粒体。OMA1不仅通过增加线粒体DNA释放,还通过激活CGAS插入来促进CGAS插入活性。最终,已经发现OMA1通过调节PD-1结合和PD-L1介导的T细胞毒性来诱导GBM中的免疫逃避。结论OMA1/HSPA9/CGAS/PD-L1轴在我们的研究中被阐明为GBM中新鉴定的免疫治疗靶标。
BSI 开创性地将安全文化融入组织 —— 无论是工业卫生、食品安全文化、职业健康安全和福祉、医 院卫生还是清洁。 凭借 100 多年前作为世界上首个国家标准机构奠定的坚实基础,BSI 与我们的客户合作成功应对环 境、社会和经济挫折带来的挑战。如今,我们是可信赖的全球品牌,拥有 5000 多名员工,业务运 营遍及全球 193 个国家/地区,成就了一些世界上最广泛采用的标准并且倡导“让追求卓越成为一种 习惯”的理念。 我们使客户能够为遇到的任何情况做好准备,从而成为更强大、更具韧性的组织。我们致力于帮助 我们的客户激发对其员工、流程和产品的信任,而这一切都是以我们的皇家特许为基础。这已融入 我们的 DNA。
HTRF 竞争试验。在细胞试验(THP1、原代骨髓来源的巨噬细胞和原代人类单核细胞)中,活性转化为 nM 效力,测量以 2',3'-cGAMP 作为激活剂刺激 TBK1-STING 通路后对 IFN 分泌的抑制。B. X 射线共晶体学证实了与 TBK1 上外位点口袋的结合模式。C. TBK1 外位点抑制剂未显示对激酶家族活性位点的任何明显抑制。
Auto-Mag® DNA 片段分选纯化回收试剂(磁珠法)是一款基于顺磁珠技术开发的高性能试剂,专为满足 下一代测序 (NGS) 文库构建中的 PCR 产物、DNA 片段和 RNA 的纯化需求而设计,同时支持 DNA 片段的大 小分选与高效回收。在 PCR 产物纯化方面,该试剂提供了单管和 96/384 孔板两种灵活格式,通过优化的缓 冲液选择性地结合 >100 bp 的 PCR 扩增产物,利用简便的清洗步骤去除多余引物、核苷酸、盐和酶,最终 使用低盐洗脱缓冲液或水进行温和高效的洗脱。在 DNA 片段大小分选中,用户可通过调整试剂与 DNA 样 本的体积比,精准选择目标 DNA 片段范围,并通过结合、洗涤和洗脱的简单操作回收分布均匀、符合实验 需求的目标 DNA 片段。