国家航空航天管理局(NASA)选择了由整个机构的早期职业员工领导的两项提案,用于为期两年的项目,这些提案将支持开发新的Deep Space Human Exportoration。这些提案是根据一项新计划选择的,以支持NASA劳动力,以应对将人类送往月球和火星北极星项目的挑战,因为小型飞行实验或降低风险的降低项目以实现高优势能力差距,并在MARS运动办公室(MCO)授予了高优先级的能力差距。由NASA Stennis航天中心(SSC)自治系统实验室(ASL)提交的提案称为弹性应用(ASTRA)是这些选定项目之一。NASA SSC与该项目的Sidus Space合作。sidus空间具有相关的先前经验和专业知识来支持这种整合和输液活动,这些技能是与选择Astra项目建议有关的关键组成部分。Astra将是Sidus Space的主要卫星平台的Lizziesat(LS)-1小型卫星的有效载荷骑手。作为与Sidus合作的一部分,NASA SSC团队将与Sidus合作,将Astra硬件和软件集成在LS-1上。Sidus Space负责火箭发射以部署卫星和所有任务操作。NASA SSC和Sidus团队正在为6到36个月的轨任务做准备。
科学环境:该项目将在新的国际研究项目“复杂的无机材料的材料 - 材料 - 材料”的框架内进行,Jean Lamour Institute(IJL,Nancy,France)和JoŽefStefanInstitute(JSI,JSI,Slovenia,Slovenia)。它将涉及来自组表面和冶金学(IJL)的更具体的研究人员,以及纳米结构材料系(S.Shturm教授,JSI)以及高素质合金组(J. Dolinsek,JSI)。两个实验室都是欧洲复杂金属合金联盟(Ecmetac,https://ecmetac.eu/)的一部分。该项目还将受益于IMEM的专业知识(CNR,意大利,F。Albertini教授; https://www.imem.cnr.it/en/adr/4/magnetic-and-magnetic-and-multiferroic-材料/插入材料)在磁磁材料上。
建议:修订后的CPG包括以下5个主题领域中的34个接收:评估和诊断,预防,治疗,噩梦的治疗以及对创伤后应激障碍(PTSD)的治疗。对PTSD治疗的六种推荐被评为强。CPG建议在药物治疗上使用特定的手动性psy-Chotherapies;长期表现,认知加工疗法或眼睛运动脱敏和重新处理心理治疗; parox- eTine,舍曲林或文拉法辛;并确保视频电信会议在验证视频触发会议或其他选项时已验证该疗法时提供推荐的心理治疗。CPG还建议使用苯二氮卓类药物,大麻或大麻衍生的产品。提供者被鼓励使用本指南来支持基于证据的,以患者为中心的护理和共同决策,以优化个人的健康成果和生活质量。
摘要:近年来,应变传感器已渗透到各个领域。传感器将物理信号转换为电信号的能力在医疗保健中非常重要。但是,获得具有高灵敏度,较大工作范围和低成本的传感器仍然具有挑战性。在此Pa -per中是由双层导电网络制成的可拉伸应变传感器,包括仿生多层石墨烯 - ECOFLEX(MLG- eCoflex)底物和多层石墨烯 - 碳纳米管(MLG -CNT)复合材料上层材料。两层的联合作用导致了良好的性能,其工作范围高达580%,高灵敏度(GF因子(GF MAX)为1517.94)。此外,使用仿生静脉样结构进一步设计了压力传感器,并具有MLG -ECOFLEX/MLG -CNT/MLG -ECOFLEX的多层堆叠,以沿厚度方向获得相对较高的变形。该设备具有高传感性能(灵敏度为0.344 kPa -1),能够监测人体的小运动,例如发声和手势。传感器的良好性能以及简单的Fabri构造程序(翻转)使其具有某些应用的潜在用途,例如人类健康监测和其他人类相互作用的其他领域。
金属电极诱导的晶格应变会损害用电子或孔自旋运行的高级量子设备的功能。在这里,我们通过nanobeam扫描X射线di效果显微镜很好地研究了由埋入10 nm厚的SI / SI 0.66 GE 0.34量子孔的晶状体上的CMOS制造钛电极引起的变形。我们能够测量2-8×10-4范围内的锡电极诱导的应变张量成分的局部调制,并具有约60 nm的横向分辨率。我们评估这些应变流动在局部调制中反映在SI传导带的最小值大于2 MeV的电势中,该电池的最小值大于2 MeV,该调制带接近静电量子点的轨道能。我们观察到,在量子孔层的给定深度处应变调制的符号取决于电极的横向尺寸。由于我们的工作探讨了设备几何形状对应变诱导的能量景观的影响,因此它可以进一步优化缩放CMOS加工的量子设备的设计。
Wehua Zhou 1*,Zitong Zhao 1,2,Angelica Lin 1,John Yang J. Scott 1,Ayesha U. Kothory 1,Yangyang Yoo 6,Erik R. Peterson 1,Navyateja Corimerla 1,Christian K. Werner 1,Jessica Laang 1,Johnna Jabson 1,Johnna Jabson 1,Sraviya Palasa 1,Sraviya Palasa 1,Alexor 1,Alexor 1,Srava,Srava,American L. Alexra M. M. M. Elaymy 1,Sean P. Ferris 7,Shuang G. 1,Costas A. Lyssiotic 13,Marc Peters-Golden 5,Yatrik M. Shah 4,Daniel R. Wahl 1,14*Wehua Zhou 1*,Zitong Zhao 1,2,Angelica Lin 1,John Yang J. Scott 1,Ayesha U. Kothory 1,Yangyang Yoo 6,Erik R. Peterson 1,Navyateja Corimerla 1,Christian K. Werner 1,Jessica Laang 1,Johnna Jabson 1,Johnna Jabson 1,Sraviya Palasa 1,Sraviya Palasa 1,Alexor 1,Alexor 1,Srava,Srava,American L. Alexra M. M. M. Elaymy 1,Sean P. Ferris 7,Shuang G. 1,Costas A. Lyssiotic 13,Marc Peters-Golden 5,Yatrik M. Shah 4,Daniel R. Wahl 1,14*
剥离 ZrSe 3 中激子的强各向异性应变可调性 Hao Li、Gabriel Sanchez-Santolino、Sergio Puebla、Riccardo Frisenda、Abdullah M. Al-Enizi、Ayman Nafady、Roberto D'Agosta *、Andres Castellanos-Gomezgi * Hao Liebla、Dr. Sergio Puebla。里卡多·弗里森达 (Riccardo Frisenda) 博士Andres Castellanos-Gomez 材料科学工厂。马德里马德里科学研究所 (ICMM-CSIC),马德里,E-28049,西班牙。电子邮件:Andres.castellanos@csic.es Gabriel Sanchez-Santolino GFMC,马德里康普顿斯大学材料物理系和多学科研究所,28040马德里,西班牙 1,沙特阿拉伯教授。 Roberto D'Agosta 纳米生物光谱组和欧洲理论光谱设施 (ETSF)、聚合物和先进材料系:物理、化学和技术、巴斯克大学 UPV/EHU、Avenida Toulouse 72、E-2018 西班牙巴斯蒂安,FUEU,圣塞巴斯蒂安科学中心,Plaza Euskadi 5,E-48009 毕尔巴鄂,西班牙电子邮件:roberto.dagosta@ehu.es 关键词:三硒化锆 (ZrSe 3 )、2D 材料、应变工程、各向异性、带隙 我们研究单轴应变对 Zr-Seco 带结构的影响,其中半导体以 3 结构各向异性为标志。利用改进的三点弯曲试验装置,使薄 ZrSe 3 薄片沿不同的晶体取向受到单轴应变,并通过微反射光谱监测应变对其光学特性的影响。获得的光谱显示出在单轴拉伸时发生蓝移的激子特征。这种转变在很大程度上取决于施加应变的方向。当薄片沿 b 轴受拉时,激子峰偏移约 60-95 meV/%,而沿 a 轴,偏移仅达到约 0-15 meV/%。采用从头算方法研究了沿不同晶体方向施加单轴应变对ZrSe 3 的能带结构和反射光谱的影响,结果与实验结果高度一致。 1. 简介
随着社会环境的不断变化,压力对社会交往产生了重大影响。本研究通过四种假设的路径模型,探讨急性压力如何影响实时合作与竞争互动的潜在认知和神经机制。我们使用基于功能性近红外光谱(fNIRS)设备的超扫描技术,通过特里尔团体社会压力测试操作,检测急性压力下参与模式游戏的二元组的脑间一致性。行为结果显示,在合作会话中,压力组的二元组比对照组的二元组表现出更好的合作表现和更高的自我与他人的重叠水平。与对照组相比,fNIRS 结果发现,压力组在合作会话期间右侧颞顶交界处(r-TPJ)的人际大脑同步性更高,合作伙伴与建造者之间的格兰杰因果关系更强。我们的研究结果证实了在合作环境中有更好的表现,并进一步发现,r-TPJ 中的脑间一致性和自我与他人的重叠连续介导了急性压力对合作表现的影响。
摘要 — 为满足对小型天线、更高性能和更低成本的需求,大多数下一代架构都要求更高的集成电路 (IC) 芯片集成度。与传统封装配置相比,2.5D 和 3D 等先进芯片封装技术提供了更高的芯片兼容性和更低的功耗。鉴于这些优势,采用先进封装是不可避免的。在先进封装中,铜柱互连是一项关键的支持技术,也是下一个合乎逻辑的步骤。该技术提供了多种优势,包括提高抗电迁移能力、提高电导率和热导率、简化凸块下金属化 (UBM) 和提高输入/输出 (I/O) 密度。铜柱允许的细间距有助于该技术取代焊料凸块技术,后者的最小间距约为 40 微米。更细的间距允许更高的 I/O 数量,从而提高性能。在本研究中,成功展示了在高密度中介层上超薄单片微波集成电路 (MMIC) 氮化镓 (GaN) 细间距铜柱倒装芯片组件的组装。使用 150 毫米间距铜柱倒装芯片,评估了有机印刷电路板 (PCB) 和硅中介层的组装工艺,并评估了化学镀镍浸金 (ENIG) 和共晶锡铅焊盘表面处理。对于 2D/2.5D/3D 组装工艺开发,使用了标准的内部拾取和放置工具,然后进行大规模焊料回流,最后进行底部填充以进行可靠性测试。互连稳健性由芯片拉力强度、助焊剂冲压调查和横截面决定。完成了 GaN 铜柱倒装芯片 2D 组装的完整可靠性和鉴定测试数据,包括 700 次温度循环和无偏高加速温度/湿度应力测试 (UHAST)。将铜柱技术添加到 GaN MMIC 芯片中,将 GaN Cu 柱技术集成到 2.5D/3D 封装技术中,并在中介层级评估 GaN Cu 柱互连可靠性都是这项工作的独特之处。