针对光伏发电光电跟踪精度低的问题,提出并设计了一种基于图像识别的新型太阳跟踪传感器。该传感器可直接输出其与太阳的角度偏差,并详细分析了其机械结构和工作原理。采用高精度相机采集投影仪表面两个缝隙的图像,利用Hough变换对光缝图像进行识别,求出两个缝隙的线性方程后,求出交点坐标,实现太阳高度角和方位角的计算。对Hough变换方案进行了改进,利用缝隙的骨架图像代替边缘图像,改进方案经验证可有效提高检测精度。利用标定测试板对传感器进行测试,实验结果表明,该方案可实现方位角和高度角的测量,精度可达0.05°,能够满足光伏发电太阳跟踪及多种光电跟踪实现对检测精度的要求。
孔隙的引入会降低低 k 薄膜的机械强度,并导致 ULSI 互连严重损坏,例如 CMP 期间的薄膜分层和/或由于封装模具树脂的热应力导致的开裂。
无人驾驶飞行器 (UAV) 越来越受欢迎,这得益于其在民用、教育、政府和军事领域的广泛应用。然而,有限的机载能量存储严重限制了飞行时间,最终影响了可用性。推进系统在 UAV 的总能耗中起着关键作用;因此,有必要确定给定任务情况下推进系统组件(即螺旋桨、电机和电子速度控制器 (ESC))的最佳组合。不同组件有数百种选择,但大多数组件的性能规格很少。APC 薄型电动螺旋桨被认为是最常用的商用现货螺旋桨类型。然而,公开文献中几乎没有关于直径较大的 APC 薄型电动螺旋桨的性能数据。本文介绍了 17 个 APC 薄型电动 2 叶固定螺旋桨的性能测试,这些螺旋桨的直径为 12 至 21 英寸,螺距值各不相同。螺旋桨的测试转速为 1,000 至 7,000 RPM,前进流速为 8 至 80 英尺/秒,具体取决于螺旋桨和测试设备的限制。本文介绍了在静态和前进流条件下测试的 17 个螺旋桨的结果,并讨论了几个关键观察结果。生成的数据可在 UIUC 螺旋桨数据网站和无人驾驶飞行器数据库中下载
发动机电子控制单元(EECU)是航空发动机中非常重要的部件,在其开发过程中需要进行多项验证试验。由于使用实际发动机进行此类验证试验需要花费大量的时间和成本,而且昂贵的发动机可能会损坏或出现安全隐患,因此,能够虚拟地产生与实际发动机相同信号的模拟器是必不可少的[1]。替代实际发动机的虚拟发动机模拟器应该能够实时提供与实际发动机运行几乎相同水平的发动机运行模拟。因此,模拟速度应该与实际系统在用户指定的时间范围内进行输入、计算和输出的速度一样快。实时仿真需要开发能够几乎实时进行计算的实时发动机模型和适当的硬件。已经进行了许多关于燃气涡轮发动机电子发动机控制系统的研究。在之前的研究中,W.J.Davies 等人进行了 F-14 飞机和推进控制集成评估。他们的论文介绍了 PWA 执行的 FADEC/F-14 集成评估,并讨论了 FADEC/F-14 集成系统的优势 [2]。H. Yamane 等人对飞机发动机控制系统的各个方面进行了调查。在他们的工作中,提出了各种用于飞机发动机的电子控制系统 [3]。F. Schwamm 对安全关键应用的 FADEC 计算机系统进行了研究。在 Schwamm 的工作中,研究了 FADEC 的发展趋势 [4]。K. Hjelmgren 等人。对单引擎飞机 FADEC 的可靠性分析进行了研究。他们的论文介绍了用于控制飞机燃气涡轮发动机的两种容错 FADEC 选项的可靠性分析 [5]。K. Ito 等人。对燃气涡轮发动机 FADEC 的最佳自诊断策略进行了研究。在他们的论文中,FADEC 在第 n 次控制计算时进行自诊断。最后提供了数值示例 [6]。Ding Shuiting 等人。对 FHA(功能性
华盛顿特区及其位于科罗拉多州博尔德的主要现场实验室在以下从事技术工作的部门和科室列表中有所提及。一般而言,各部门负责开展材料研究,为工业、商业、教育机构和政府提供所需的方法、测量标准和数据。该研究所还提供咨询和
在这些测试中,过滤器安装在通风管内,并确定了通过清洁器的所需空气流速。从测试管道中心抽取空气样本,在距离上游一英尺的点处,每英尺都通过 Whatman No. 14I 滤纸的已知面积。过滤器在上游和下游使用的面积以及在上游和下游过滤空气的时间都是通过实验选择的,以便光透射的变化
• FAT - BMS、电池、控制器、逆变器、集成系统等的工厂验收测试。 • SAT - 开关设备、逆变器、BMS、电池、站点控制器、通信系统等集成系统的现场验收测试。 • 用例测试 - 针对能源套利、辅助服务、可再生能源转移、调峰、调峰置换、输配电延迟、电压控制等服务。 • 保修测试 - 测试铭牌功率容量、储能容量、往返效率、控制延迟、温度限制、充电和放电电流限制、电压限制、逆变器停机率、正常运行时间等。 • 安全系统测试 - 灭火系统、烟雾探测、接地、快速通风系统、视觉报警系统、声音报警系统、建筑物接近度、防火屏障等。 • 健康状态测试 – 测试电池衰减和退化、能量吞吐量、剩余容量、内部阻抗等。 • 通信系统测试 – 远程站点控制测试、站点控制测试、响应通信测试、寄存器映射检查、数据收集测试、警报、状态、测量和控制测试 • 性能测试 – 输入到输出的端到端测试、延迟、响应延迟、下冲、过冲、反极点、控制器调整等
使用抑制剂可以最大程度地减少或阻止石油和天然气工业中气体水合物的形成。本文报道了半纤维素和改性木质素作为低剂量气体水合物抑制剂(LDGHIS)。ldghis,并通过减弱的总反射率 - 傅立叶变换红外(ATR -FTIR)光谱仪,孔隙率和热力计分析仪(TGA)。PGE和SCB分别产生了77.75%和12.38%的半纤维素,而椰子coir产生了35.59%的木质素,该木质素经过修饰为木质磺酸钠(SLS),以提高其在水中的溶解度。根据转化为气体水合物的水百分比,评估了分离的半纤维素和修饰木质素对气体水合物的抑制作用。在没有抑制剂的情况下,将大部分的水(75.20%)转化为气体水合物,而在半纤维素的存在下,将最小水转化为气体水合物的含量为43.37%。随着浓度的增加,半纤维素从PGE和SCB增加的抑制能力增加。统计检验表明,在PGE和SCB的半纤维素存在下形成气体水合的水百分比之间没有显着差异(n = 4,p = 0.06,CI = 95%)。另一方面,SLS促进了气体水合的生长。在存在SLS的情况下,反应堆中的所有液体均转化为气体水合物。因此,SLS可以用作天然气储存和二氧化碳固相的气体水合物的启动子,而PGE和SCB的半纤维素作为低剂量水合物抑制剂。
机组性能测试 LG 开始推广风冷式冷水机组和水冷式冷水机组的工厂性能测试,以表明我们对自己设计和制造的产品负责。性能测试的好处包括验证性能、预防操作问题以及确保顺利启动。只有在实验室或实验室级设施中进行的性能测试才能确认特定冷水机组的性能和运行情况。大多数工厂性能测试进展顺利。如果出现问题,LG 人员很容易纠正问题,并将冷水机组运到工作现场。当要求进行工厂性能测试时,测试可以在指定的设计条件下进行。测试设施能够控制环境测试条件,以向客户保证我们的冷水机组将按预期运行。