神经发育障碍(NDDS)涵盖以异常大脑发育为特征的疾病,这些疾病会影响认知,交流,行为和运动。这些疾病,包括自闭症谱系障碍(ASD),注意力/多动障碍(ADHD)和智力障碍,代表了一项重要的公共卫生挑战,影响了全球多达3%的儿童。尽管我们对这些疾病的理解取得了进步,但缺乏特定的疗法强调了进一步研究其病因和病理生理学的必要性。最近的研究确定了与NDD相关的许多基因变异,从单核苷酸变体到拷贝数变体。这些发现指向与NDD相关的各种不同基因,突出了这些疾病的遗传复杂性。然而,许多NDD的起源仍然未知,表明超出遗传变异的因素可能起着至关重要的作用。新兴证据表明,神经素的流量机制和环境因素,例如早期生命逆境,是NDD发展的重要贡献者。在人类和动物模型中整合分子,行为和神经敏化研究的多学科方法对于理解这些方面至关重要。本社论推出了一系列原始研究文章,旨在揭示NDD的复杂机制,并探索新型治疗策略的潜在途径。
1. Reyes‑Habito CM、Roh EK。化疗药物的皮肤反应和癌症的靶向治疗:第二部分。靶向治疗。J Am Acad Dermatol 2014;71:217.e1‑217.e11。2. Allegra CJ、Rumble RB、Hamilton SR、Mangu PB、Roach N、Hantel A 等。RL 扩展转移性结直肠癌的 RAS 基因突变检测以预测对抗表皮生长因子受体单克隆抗体疗法的反应:美国临床肿瘤学会。J Clin Oncol 2016;34:179。3. Coppola R、Santo B、Ramella S、Panasiti V。表皮生长因子受体抑制剂的新型皮肤毒性。一例接受西妥昔单抗治疗的转移性结直肠癌患者出现擦烂样皮疹。 Clin Cancer Investig J 2021;10:91-2 4. Lacouture ME。EGFR 抑制剂的皮肤毒性机制。Nat Rev Cancer 2006;6:803-12。5. Eilers RE Jr.、Gandhi M、Patel JD、Mulcahy MF、Agulnik M、Hensing T 等。接受表皮生长因子受体抑制剂治疗的癌症患者的皮肤感染。J Natl Cancer Inst 2010;102:47-53。6. Elmariah SB、Cheung W、Wang N、Kamino H、Pomeranz MK。系统性药物相关性间擦疹和屈侧皮疹 (SDRIFE)。Dermatol Online J 2009;15:3。 7. Weiss D、Kinaciyan T. 甲芬那酸诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE)。JAAD Case Rep 2019;5:89-90。8. Kumar S、Bhale G、Brar BK。氟康唑诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE):一种常用药物的罕见副作用。Dermatol Ther 2019;32:e13130。9. Li DG、Thomas C、Weintraub GS、Mostaghimi A. 强力霉素诱发的对称性药物相关性擦擦和屈侧皮疹。Cureus 2017;9:e1836。10. Moreira C、Cruz MJ、Cunha AP、Azevedo F. 对称性
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
1儿科,妇科和妇产科系,CANSEARCH研究平台,儿科肿瘤学研究平台,瑞士日内瓦大学,日内瓦大学,日内瓦大学医学院2蒙佩利·埃雷恩·亚历山大·格罗顿迪克(Imim),CNRS,UMR 5149,蒙彼利埃大学,蒙彼利埃大学,蒙彼利埃,法国5149,法国5149,临床药理学和毒理学部,部门巴塞尔,巴塞尔,瑞士和巴塞尔大学,瑞士巴塞尔大学8血液学分部,骨髓移植单元,日内瓦大学医院,日内瓦大学医院和医学院,瑞士日内瓦大学医学肿瘤学和血液学系9日内瓦大学医学肿瘤学和血液学系,瑞士苏里奇,瑞士,瑞士,瑞士学院10级,船长学院。瑞士Aarau 11儿科肿瘤学和血液学分校,瑞士日内瓦大学日内瓦医院妇女,儿童和青少年系
该内容已被UAB数字共享的授权管理员所接受,并作为免费开放访问项目提供。有关此项目或UAB数字共享的所有查询,都应将其针对UAB图书馆学术通信办公室。
放射性药物代表了现代医学的一个新兴领域,开启了由核科学原理驱动的诊断和治疗潜力的新时代。虽然辐射的医学应用可以追溯到一个多世纪以前,但最近放射性药物的进步和日益增长的兴趣标志着该领域深刻范式转变的开始。近年来,大量针对新型医用放射性同位素和靶向分子的研究和临床试验凸显了核医学创新的复兴,特别是在肿瘤学、心脏病学和神经病学等专业领域。在这些领域中,精准放射性化合物在开创个性化和前沿的患者护理方面发挥着关键作用,符合真正个性化医疗的愿景。
胶质母细胞瘤是最具侵袭性的原发性脑癌,预后不佳,但全身治疗仅限于 DNA 烷基化化疗。探索胶质母细胞瘤的神经发育和神经生理脆弱性可能会产生新的治疗策略。为此,我们使用临床一致和单细胞解析平台系统地筛选了胶质母细胞瘤患者手术材料中可重复利用的神经活性药物。通过分析 27 名患者和 132 种药物的 2,500 多种体外药物反应,确定了具有强效抗胶质母细胞瘤功效的类别多样的神经活性药物,这些药物已在模型系统中得到验证。可解释的药物靶标网络分子机器学习揭示了 AP-1/BTG 驱动的胶质母细胞瘤抑制的神经活性收敛,从而能够以高患者验证准确度对超过 100 万种化合物进行扩展的计算机筛选。深度多模态分析证实 Ca 2+ 驱动的 AP-1/BTG 通路诱导是神经肿瘤胶质母细胞瘤的弱点,抗抑郁药沃替西汀与目前标准化疗的体内协同作用就是一个典型例子。这些发现为胶质母细胞瘤治疗建立了一个可行的框架,其根源在于其神经病因。