慢性疼痛治疗仍然是一个痛苦的挑战,在我们老龄化的社会中,报告疼痛缓解不足的患者数量继续增长。当前的治疗方案都有其缺点,包括有限的效力以及虐待和成瘾的倾向;正在进行的阿片类药物危机举例说明了后者。在过去的几十年中,广泛的研究一直在慢性疼痛状态下的机制上,从而为新颖,有效且安全的药物介入带来了特殊的机会。瞬态受体电势(TRP)离子通道家族的成员代表了针对根部疼痛感觉的创新靶标。三个TRP通道TRPV1,TRPM3和TRPA1特别关注,因为它们被确定为伤害感受器神经元的化学和热诱导疼痛的传感器。本综述总结了有关基于TRP通道的疼痛疗法的知识,包括TRPV1拮抗剂临床发育的颠簸道路,TRPA1拮抗剂的当前状态以及靶向TRPM3的未来潜力。
慢性疼痛是同伴动物中普遍存在的状况,并带来了巨大的福利挑战。为了有效地解决这些问题,兽医临床医生必须对伤害感受的神经解剖学以及疼痛感知的复杂过程有全面的了解。此知识对于计划和实施目标治疗策略至关重要。但是,有关疼痛机制的许多现有信息来自对啮齿动物或人类的研究,强调需要进行进一步的翻译研究以弥合兽医应用的这一差距。本综述旨在为兽医提供对狗和猫的脊柱伤害感受途径的深入概述,从而追踪从伤害感受器激活到大脑皮质处理的旅程。此外,该评论探讨了影响伤害感受信号传导和疼痛感知的因素。通过增强对这些基本生理过程的理解,这项工作旨在为开发有效的疗法奠定基础,以管理伴侣动物中慢性疼痛的复杂性。
抽象的原发性纤毛是从细胞膜延伸的感觉细胞器,并且在各种细胞类型中发现。纤毛具有大量的重要组成部分,可以检测和传播几种信号通路,包括Wnt和SHH。反过来,纤毛生成和纤毛长度的调节受各种因素的影响,包括自噬,肌动蛋白细胞骨架的组织以及纤毛内部的信号传导。不规则性导致一系列称为纤毛病的临床表现。大多数纤毛病患者的视网膜变性率很高。最常见的理论是,视网膜变性主要是由视网膜感受器中的功能和发育问题引起的。迄今为止尚未探索其他纤毛视网膜细胞类型对视网膜变性的贡献。在这篇综述中,我们研究了各种视网膜细胞类型中原发性纤毛的发生及其在病理学中的特征。此外,我们探讨了针对纤毛病的潜在治疗方法。通过参与这项工作,我们提出了新的想法,这些思想阐明了创新的概念,以对视网膜纤毛病的未来研究和治疗。关键词视网膜纤毛病,视网膜炎色素炎,视网膜营养不良,光感受器,RGC细胞,遗传失明
阳光暴露被认为是年龄相关黄斑变性(AMD)的危险因素,这是老年人常见的神经退行性视网膜疾病。具体来说,阳光内的蓝光波长会对光敏性视网膜细胞的生理产生负面影响,包括视网膜色素上皮(RPE)和感光体。本评论探讨了蓝光引起的视网膜变性,强调了RPE中的结构和功能障碍。初始部分简要概述了蓝光对光感受器的影响,然后对其对RPE的有害影响进行了全面分析。体外研究表明,蓝光暴露会诱导RPE的形态改变和功能障碍,包括吞噬活性降低,神经营养因子的分泌破坏以及障碍功能受损。还探索了视网膜损伤的机制,包括氧化应激,炎症,脂肪霉素积累,线粒体功能障碍和RPE中的ER应激。讨论了用于研究蓝光暴露的体外,动物和体内模型的优势和局限性,并建议在未来的研究中提高可重复性。
每个人都会在其存在的某个时刻知道痛苦,这是防止有害刺激的保护标志。 div>在某些情况下,以长期的方式继续3个月。 div>在不稳定的系统中,任何刺激都会引起疼痛(异常性症)或对疼痛刺激的敏感性(痛痛)。 div>研究使我们对适应性和适应不良的变化有所了解,例如长期活化的电位,信号增加,细胞凋亡,基因表达的变化,伤害感受器的敏感性提高,神经胶质治疗,小胶质细胞体内稳态的变化和小胶质细胞和星形胶质细胞的变化。 div>as well as the anatomical sites involved and modified by chronic pain and comorbidities, such as the accumbens nucleus, medial dorso nucleus, hypothalamus, parabrachial nucleus, anterior cingulated cortex, primary somatosensory bark, medial septum, hippocampus and nucleus of the terminal estía. div>本综述指出了有关神经可塑性和慢性疼痛的最新信息,目的是促进多学科和跨学科方法。 div>
Fabry病(FD)是X连锁遗传的溶酶体存储障碍。在α-半乳糖苷酶A基因中的突变导致细胞球形甲基甲酰胺(GB3)沉积和两性的触发性疼痛,作为未知病理生理学的早期FD症状。我们旨在阐明皮肤细胞与伤害感受器敏化之间的联系,以性别相关的方式导致FD疼痛。我们使用了27名成人FD患者和20个健康对照组的培养的角质形成细胞和成纤维细胞。培养并进行免疫反应以评估GB3载荷,表皮角质形成细胞和降低的成纤维细胞进行培养和免疫反应。 对疼痛相关的离子通道和促炎性细胞因子的基因表达分析是在降低的成纤维细胞中进行的。 我们进一步研究了诱导的Pluripotent干细胞(IPSC)衍生的具有FD男子的感觉样神经元的电生理特性,并将其健康的男人和米鲁鲁金8(IL-8)或成纤维细胞超级中断作为体外模型Sys-tems孵育。 角质形成细胞没有细胞内,而是膜结合的GB3沉积物。 在很重要的情况下,成纤维细胞显示细胞内GB3,并且与对照组相比,男性和女性在男性和女性中均显示了钾中间/小电导的基因表达较高的基因表达。 此外,细胞因子表达分析显示,仅在雌性FD成纤维细胞中IL-8 RNA水平升高。 斑块夹具研究表明,与IL-8或FD女性的成纤维细胞上清液一起孵育的IPSC神经元细胞系减少了Rheobase Currents。表皮角质形成细胞和降低的成纤维细胞进行培养和免疫反应。对疼痛相关的离子通道和促炎性细胞因子的基因表达分析是在降低的成纤维细胞中进行的。我们进一步研究了诱导的Pluripotent干细胞(IPSC)衍生的具有FD男子的感觉样神经元的电生理特性,并将其健康的男人和米鲁鲁金8(IL-8)或成纤维细胞超级中断作为体外模型Sys-tems孵育。角质形成细胞没有细胞内,而是膜结合的GB3沉积物。在很重要的情况下,成纤维细胞显示细胞内GB3,并且与对照组相比,男性和女性在男性和女性中均显示了钾中间/小电导的基因表达较高的基因表达。此外,细胞因子表达分析显示,仅在雌性FD成纤维细胞中IL-8 RNA水平升高。斑块夹具研究表明,与IL-8或FD女性的成纤维细胞上清液一起孵育的IPSC神经元细胞系减少了Rheobase Currents。我们得出的结论是,女性FD患者皮肤成纤维细胞中的GB3沉积可能导致KCA3.1活性和IL-8分泌增加。这可能导致皮肤伤害感受器的敏化,作为导致性别相关的FD疼痛表型的潜在机制。
生物生物体中的触感是一种依赖各种专业受体的教师。这项研究中介绍的双峰传感皮肤,结合了将皮肤归因于机械和热感受器功能的软电阻复合材料。模仿不同自然受体在皮肤层的不同深度中的位置,可以实现软电阻式组合的多层布置。然而,信号响应的大小和刺激的定位能力随双峰皮肤的较轻压力而变化。因此,采用了一种基于学习的方法,可以帮助您对4500探针的刺激进行预测。类似于人脑中的认知功能,两种类型的感觉信息之间的感觉信息的串扰使学习体系结构可以更准确地预测刺激的定位,深度和温度。使用8机械感受器和8个热感应感应元素的定位精度为0.22 mm,温度误差为8.2°C,对于较小的元素间距离实现了。将双模态感测多层皮肤与神经网络学习方法结合起来,使人造触觉界面更接近地模仿生物皮肤的感觉能力。
哺乳动物的味觉感知源于挥发性物质的颗粒与味觉受体接触时产生的味觉感受器——味蕾中聚集的专门化学感受器,味蕾位于口腔内。味蕾簇位于小乳头上,根据其位置不同,乳头的形状和大小也不同。成年人有大约 10,000 个味蕾。每个味蕾内有大约 50-150 个杆状味觉细胞,它们将信息传递给神经元细胞,神经元细胞又将信息传递给大脑。五种味觉受体对食物或大气中存在的特定化学物质组作出反应。不同的味觉有不同的味觉阈值,对甜味和咸味的阈值最高,对苦味食物的阈值最低。味觉可以根据味觉区分机制分为两类。对于酸味和咸味,其机制分别基于氢离子和钠离子,通过改变受体的膜电位直接与离子通道反应 [18, 23]。对于甜味和苦味来说,G蛋白上存在着蛋白质受体点,这些受体点与味觉物质分子形成复合物后,会激活G蛋白,从而引发一系列化学变化[4]。这两种机制都会导致神经脉冲的激发,并传递到大脑。
触觉技术涉及使用电气或机械手段来刺激皮肤中的传入神经或机械感受器,作为产生物理触摸感觉的基础,这些感觉可以在定性地扩大虚拟或增强现实体验,而不是仅由视觉和听觉提示支持的经验。在该领域的一个新兴方向涉及平台的开发,这些平台不仅在指尖,而且对人体的任何和所有区域都为皮肤提供时空模式,并使用对用户造成可忽略的物理负担的薄,皮肤般的技术。本综述强调了这种类型的皮肤接口的生物学基础,以及在这个雄心勃勃的目标的背景下,触觉的最新进展,包括电动性和颤振效果设备,这些设备支持具有皮肤融合界面的潜在形式的触摸感感知。内容包括讨论将这些刺激器集成到可编程阵列中的方案,重点是可扩展的材料和设计,这些材料和设计有可能支持皮肤大面积的软接口。总结部分总结了该领域成功研究工作的潜在后果,以及材料科学和工程学中的重要多学科挑战和相关的研究机会。
基于表面增强的拉曼s骨(SERS)分子检测的可靠性。因此,在热点处的3D散装溶液中,无限分子的精确放置仍然是获得超敏感和可再现的无标记 - 无分子检测的目标。已经提出了一些用于定位靶标分子的方法,包括使用生物感受器[4-6]增强分子相互作用并进行电动作用。[7-9]受体分子为靶分子提供了特定的结合位点。但是,由于受体和靶分子之间的结合事件高度依赖于靶分子在散装溶液中的分子扩散,因此使用这种被动扩散过程很难实现实时检测。对于基于溶液的检测系统,电动驱动被认为是一种有前途的方法,可以通过电溶剂在热点区域浓缩带电的小痣。[7-9]但是,由于纳米级热点与大型大型杂菌质量之间的大小不匹配,因此这些常规的SERS平台不能很好地适应对呼吸道病毒的无标记和快速检测。尽管可以通过电泳吸引≈100nm的病毒粒子颗粒,但由于其结构上的复杂性和较大的尺寸,它们可能不适合纳米级热点。