表 1. 器件概要.................................................. ... . 6 表 3. 机械特性@Vdd = 2.5 V,T = 25 °C 除非另有说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 表 14. 主机接收(读取)来自从机的多个字节数据时的传输 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 表 22. CTRL_REG2 说明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 表 23. 高通滤波器模式配置. ...高通滤波器截止频率配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 表 31. CTRL_REG5 描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 28 表 35. STATUS_REG 寄存器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 表 36. STATUS_REG 描述. ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。31 表 46. INT2_CFG 寄存器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 表 47. INT2_CFG 描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 表 48. 中断模式配置. ...
摘要Via地面(GND)结构构成设计高性能印刷电路板(PCB)的最有用的元素之一。与VIA的电气连接成为实施各种电子函数的关键常规解决方案。但是,到目前为止,VIA从未用于设计负组延迟(NGD)电路。为了回答这个好奇的问题,本文介绍了有关使用Via Ground的低通NGD功能设计可行性的原始研究。在拓扑描述之后,建立了VIA参数功能的NGD分析。制定了允许合成NGD函数指定功能的通过功能的设计方程式。与商业工具之间的计算和模拟之间的比较验证了开发的NGD理论。正如预期的那样,在一百毫米截止频率上以百秒秒为单位的ngd值在理论模型和仿真之间具有良好的一致性获得。此外,时域分析了通过NGD结构的确认,可以在任意波形输入信号的时间吸收时生成输出信号,显示有限的带宽。
摘要 — 光学互连是片上通信中铜基布线的有前途的替代品。集成 IV 族纳米光子学的最新进展应该能够解决与速度、能耗和成本相关的一系列挑战。单片集成锗 pin 光电探测器位于绝缘体上硅 (SOI) 波导上,是这一蓬勃发展的研究领域中不可或缺的设备。在这里,我们全面研究了异质结构 pin 光电探测器的光电特性。所有光电探测器均采用工业级半导体制造工艺在 200 毫米 SOI 基板上制造。在 1 V 的低偏置电压下,pin 光电探测器的暗电流为 5 nA 至 100 nA,暗电流密度为 0.404 A/cm 2 至 0.808 A/cm 2,响应度在 0.17 A/W 至 1.16 A/W 范围内,截止频率为 7 GHz 至 35 GHz。这些成就使它们有望用于以 40 Gbps 运行的节能光链路,器件能量耗散仅为每位几 fJ。
摘要 — 本研究展示了 Si 衬底上 GaN 高电子迁移率晶体管 (HEMT) 的高频和高功率性能。使用 T 栅极和 n ++ -GaN 源/漏接触,栅极长度为 55 nm、源漏间距为 175 nm 的 InAlN/GaN HEMT 的最大漏极电流 ID,MAX 为 2.8 A/mm,峰值跨导 gm 为 0.66 S/mm。相同的 HEMT 表现出 250 GHz 的正向电流增益截止频率 f T 和 204 GHz 的最大振荡频率 f MAX。ID,MAX、峰值 gm 和 f T -f MAX 乘积是 Si 上 GaN HEMT 中报道的最佳乘积之一,非常接近最先进的无背势垒 SiC 上耗尽型 GaN HEMT。鉴于 Si 的低成本和与 CMOS 电路的高兼容性,Si 上的 GaN HEMT 对于成本敏感的应用特别有吸引力。
继续缩小晶体管尺寸的主要障碍是保持具有高掺杂浓度梯度的超浅源/漏 (S/D) 结,这无疑需要先进而复杂的 S/D 和通道工程。无结晶体管配置被发现是一种替代器件结构,其中可以完全消除结和掺杂梯度,从而简化制造工艺。本文进行了工艺模拟,以研究无结配置对双栅极垂直 MOSFET 的模拟和 RF 行为的影响。结果证明,n 沟道无结双栅极垂直 MOSFET (n-JLDGVM) 的性能略优于结双栅极垂直 MOSFET (n-JDGVM)。无结器件表现出更好的模拟行为,因为跨导 (gm) 增加了约 4%。就 RF 行为而言,无结器件的截止频率 (fT) 和增益带宽积 (GBW) 分别比结器件高 3.4% 和 7%。
摘要 量子探测是利用简单量子系统与复杂环境相互作用来提取某些环境参数(例如环境温度或其光谱密度)的精确信息的技术。在这里,我们分析了单量子比特探测器在表征热平衡下的欧姆玻色子环境方面的性能。特别是,我们分析了调整探测器与环境之间的相互作用哈密顿量的影响,超越了传统的纯相位失调范式。在弱耦合和短时间范围内,我们以分析方式处理探测器的动力学,而在强耦合和长时间范围内则采用数值模拟。然后,我们评估量子 Fisher 信息以估计截止频率和环境温度。我们的结果提供了明确的证据,表明纯相位失调不是最佳的,除非我们将注意力集中在短时间内。特别是,我们发现了几种工作方式,其中横向相互作用的存在提高了最大可达到的精度,即增加了量子 Fisher 信息。我们还探讨了探针的初始状态和探针特征频率在确定估计精度中的作用,从而为设计优化检测以在量子水平上表征玻色子环境提供定量指导。
摘要:本文介绍了一种用于检测脑电图 (EEG) 信号的模拟前端 (AFE)。AFE 由四个部分组成,即斩波稳定放大器、纹波抑制电路、基于 RRAM 的低通 FIR 滤波器和 8 位 SAR ADC。这是首次在 EEG AFE 中引入基于 RRAM 的低通 FIR 滤波器,其中利用 RRAM 的生物可信特性高效分析模拟域中的信号。前置放大器采用对称 OTA 结构,在满足增益要求的同时降低了功耗。纹波抑制电路大大改善了噪声特性和失调电压。基于 RRAM 的低通滤波器实现了 40 Hz 的截止频率,适用于 EEG 信号的分析。SAR ADC 采用分段电容器结构,有效降低了电容器开关功耗。芯片原型采用 40 nm CMOS 工艺设计。整体功耗约为13µW,实现超低功耗运行。
脑电图设计(EEG)设计作为对基于Arduino Uno的额叶部分中脑信号活性的检测。EEG是一种用于记录人脑电活动的工具。 这项研究的目的是创建一种非临床EEG设备,该设备是便携式和低成本的。 研究程序分为三个阶段。 第一阶段是使用Eagle应用程序设计脑电图系统。 第二阶段是创建一个由脑电图系统,电源,Arduino Uno和两个电极组成的EEG系统。 第三阶段是测试EEG系统,其中包括测试仪器加固,低通滤波器测试,电源测试,ADC ARDUINO一致性测试和EEG性能的初步测试以记录大脑信号。 基于测试结果获得了51次仪器加固,平均准确率为99.09%。 同时,获得的截止频率为70 Hz。 使用原型单电极EEG和EEG标准情绪EPOC通过在FP1和A2(地面)点上放置电极,大脑信号测量之间的比率是几乎相同的模式。 因此可以得出结论,创建的EEG单电极系统已成功地用于记录额叶区域的大脑活动。 关键字:Arduino Uno,EEG,额叶,大脑信号EEG是一种用于记录人脑电活动的工具。这项研究的目的是创建一种非临床EEG设备,该设备是便携式和低成本的。研究程序分为三个阶段。第一阶段是使用Eagle应用程序设计脑电图系统。第二阶段是创建一个由脑电图系统,电源,Arduino Uno和两个电极组成的EEG系统。第三阶段是测试EEG系统,其中包括测试仪器加固,低通滤波器测试,电源测试,ADC ARDUINO一致性测试和EEG性能的初步测试以记录大脑信号。基于测试结果获得了51次仪器加固,平均准确率为99.09%。同时,获得的截止频率为70 Hz。使用原型单电极EEG和EEG标准情绪EPOC通过在FP1和A2(地面)点上放置电极,大脑信号测量之间的比率是几乎相同的模式。因此可以得出结论,创建的EEG单电极系统已成功地用于记录额叶区域的大脑活动。关键字:Arduino Uno,EEG,额叶,大脑信号
CF/环氧树脂, 155, 174, 198, 240, 255, 330, 369, 481, 490, 552, 661 CFRP, 111, 419 GF/环氧树脂, 255, 330, 356, 473, 601 GF/酚醛树脂, 558 玻璃球/环氧树脂, 311 铁氧体/树脂, 347 凯芙拉纤维/环氧树脂, 347 铅球/环氧树脂, 311 MMC, 210, 507 SiC/Al, 507, 633 SiC/Ti 合金, 596 钢球/PMMA, 311 钢/聚合物水泥混凝土, 92 钽/SiC, 29 钨/羰基镍, 620不锈钢/钨钢,620 复合板,282 复合截面模量,565 压缩试验,680 压缩应力,678,684 置信限度,93,102 腐蚀,636 裂纹密度,46,602 正面,524,528 H 形,144,150 扩展,150,524,526 运行,526 交叉层,111,355,552 Cunningham,Mary E.,253-262 固化周期,490 曲面表面,264,275 截止频率,312,324
摘要 - 神经信号记录引起了越来越多的关注,因为它提供了一种阅读大脑活动,了解大脑操作并恢复身体失去运动功能的必要方法。神经记录系统中最重要的模块之一是传感器界面IC,它捕获,放大,过滤器并数字化弱神经信号。为了保护受试者在测试下的自由运动并最大程度地减少感染风险,传感器界面IC通常植入皮肤或无线传输的头骨下。神经信号的性质及其记录场景对传感器接口IC施加了刚性设计规格,例如低噪声,低功率,低截止频率和最小芯片尺寸。最近有许多设计在神经记录系统中应对这些挑战。在本文中,将引入用于神经记录传感器接口IC的设计技术,包括系统体系结构和神经放大器的设计。研究了实现低功率,低噪声和低截止频率的方法。此外,还讨论了实现系统功率和面积优化的方法。