手性在许多物理,化学和生物学领域至关重要,那里有两种不可感染的形式(对映异构体),其中一个是另一种镜像。自巴斯德时代以来,手性和磁性之间的相互作用一直引起了人们的关注,这是新兴的媒介的来源。基本的对称性论点表明,当将手性系统置于磁场中时,允许使用磁性效果的全新效果系列(MCHA)(MCHA)(有关最近的综述,请参见1)。该家族的第一个成员要在实验中报告,光学MCHA,cor-响应于在吸收和折射的非极化光的吸收和折射中,并平行或与fine field eeld平行,2。3最初在可见的波长范围内观察到4、5、6的存在,后来在整个电磁频谱中确定了从78到X射线,910和Photochem-Istry中的整个电磁谱。11电MCHA(EMCHA),在Bismuth螺旋,12个碳纳米管的电阻中观察到,13碳纳米管,14个散装的导体,15个金属,15,16 16半导体17和超导体18作为电阻和电气的抗性i的电阻,并取决于电气的抗药性。 b通过(bI)=0(1 +b·i)(1)
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。
对映选择性金 (I) 催化的挑战显然与活性配合物的线性几何形状有关,并且在许多情况下与对映决定步骤的外层机制有关。尽管如此,近年来可以通过空间拥挤的配体(其形成嵌入远端活性位点的深手性口袋)、双功能膦或可能通过亲金相互作用形成的双核配合物实现高对映选择性。1 另外,Toste 2 引入了手性反离子策略,其中值得注意的是 BINOL 衍生的磷酸盐在涉及阳离子金中间体的反应中充当手性诱导剂。尽管对于磷酸盐阴离子的确切机制和作用存在一些不确定性,但该策略已显示出突出的潜力,并引发了金 3,4 和其他过渡金属催化的重大进展。 5,6 在金 (I) 催化中,首次公开的分子内氢烷氧基化、氢羧化和氢胺化反应迄今为止仍然是反离子策略的主要应用领域,尽管该方法在理论上应该适用于更广泛的反应。值得注意的是,所有涉及对映体决定步骤中紧密离子对的反应都可能适用,包括那些通过碳阳离子中间体与远程中性金 (I) 单元进行的反应。这种情况可以用图 1.1 中的串联杂环化-亲核加成反应来适当地代表。7 在这种情况下以及其他情况下,手性反离子的立体化学控制受到磷酸盐-碳阳离子对的空间排列不明确和灵活的影响。我们认为可以通过以某种方式将磷酸盐反离子束缚在阳离子金复合物上来克服这个缺点(图 1.2b)。将磷酸单元连接到金配体的共价系链可能为关键中间体提供足够的几何约束和分子组织,从而实现有效的立体化学控制。如果正确实施,这种方法可能会突破对映选择性金催化以及更广泛地说对映选择性过渡金属催化中“离子配对策略”的极限。之前已经报道过在分子内嵌入阴离子的过渡金属配合物。然而在这些
1 国家核研究中心,05-540 'wierk,波兰 2 华沙大学重离子实验室,02-093 华沙,波兰 3 华沙大学物理学院,02-093 华沙,波兰 4 华东师范大学物理系,上海 200241,中国 5 Horia Hulubei 国家物理与核工程研究所,077125 布加勒斯特,罗马尼亚 6 国家核物理研究所,I-35131 帕多瓦,意大利 7 北京大学物理学院核物理与技术国家重点实验室,北京 100871,中国 8 北京航空航天大学物理学院,北京 102206,中国 9 京都大学汤川理论物理研究所,京都 606-8502,日本 10 IJCLab,CNRS/IN2P3;巴黎萨克雷大学,91405 奥赛,法国 11 塔尔苏斯大学工程学院自然科学与数学科学系,33480,梅尔辛,土耳其
1个创新与科学系,法国安东尼的Stallergenes Greer | 2服务de pneumologie et CenterdeRéférencepour les les radies Respratoires Rares,HôpitalBichat,Ap-HP-HP-Nord-NordsitéParisitéParisitéParisé,法国巴黎,法国| 3 Crisalis F-Crin Network,法国巴黎,法国| 4图卢兹感染和炎症性疾病研究所(Infinity),Inserm umr1291,CNRS UMR5051,图卢兹大学,图卢兹III,图卢兹,法国,法国| 5法国图卢兹医学院图卢兹大学医院呼吸医学系| 6 Crisalis/fcrin,法国图卢兹| 7波兰卡托维奇的西里西亚医科大学内部疾病,皮肤病学和过敏症临床系| 8德国马尔堡市马尔堡大学医院马尔堡大学医院马尔堡大学医院马尔堡大学医院的口和颈外科手术系Otorhinolaryngology系| 9个个性化医学,哮喘和过敏,意大利米兰的Humanitas临床和研究中心IRCC | 10意大利米兰人类大学生物医学科学系| 11瑞士过敏和哮喘研究所,瑞士达沃斯苏黎世大学| 12国家心脏和肺部研究所,英国伦敦帝国学院| 13英国伦敦的NIHR帝国生物医学研究中心
摘要:通常认为开放壳分子石墨烯片段的反应被认为是不希望的分解过程,因为它们导致诸如π-磁性等所需特征的丧失。氧化二聚二聚体表明,这些转化是通过在单个步骤中形成多个键和环制造复杂结构的合成结构的希望。在这里,我们探讨了使用Phena-lenyyl的这种“不希望”反应来构建应变并提供非平面多环芳烃的可行性。为此,我们设计并合成了一个双烯基单元通过双苯基骨架链接的Biradical系统。设计促进了分子内级联反应对螺旋扭曲的鞍形产物,其中一个反应中的关键转换(环锁和环形融合)在一个反应中。通过单晶X射线衍射分析证实了最终的绿吡就产物的负曲率,该植物诱导的曲率通过分辨率通过分辨率的映异构体验证,该螺旋扭转验证了螺旋扭曲,这些向映异构体显示圆形极化的发光和高构型稳定性。
尽管联芳骨架在天然化合物和药用化合物 1 中非常普遍,但包含糖部分的结构仍然很少。作为天然存在的物质,一些糖功能化的联芳分子(图 1)已从海棠 2 、火棘( 1 ) 3 繁缕( 2 ) 4 和珍珠菜 5 中分离出来,这些植物的茎、树皮、果实和根一直被用于传统中药。化合物 3a,b 存在于云芝 6 和厚朴 7 中,而它们的合成同源物 3c 则被证明 8 是一种很有前途的分子,可用于开发一类新型抗抑郁药物。鞣花单宁是天然多酚,属于可水解单宁类,具有一个或多个六羟基联芳单元,围绕着一个中心葡萄糖核心。 9 其中,1951 年从马豆中分离出来的 corilagin 4 表现出了较强的抗肿瘤活性。10 1995 年,11 对一系列 ( -D-甘露吡喃糖基)联苯底物 5 抑制 E-、P- 和 L- 选择素-IgG 融合蛋白与 HL60 细胞表面表达的 sLex 结合的能力进行了测定。糖功能化联芳分子生物活性的多样性使得它们的硫代类似物成为设计新型生物活性联苯糖苷的主要候选物。事实上,硫糖可以用作糖模拟物,对化学和酶降解都更加稳定。在此背景下,我们最近报道了两种通过
拓扑优化图1(a)描绘了TO的物理模型。拓扑设计空间由400×400×100 nm 3的矩形区域定义,这是测量1的较大电磁场模拟区域的一部分。1 µm×1。1 µm×600 nm。在设计空间下方放置了100 nm厚的SIO 2底物。使用具有高斯模式的R -CPL使用几乎薄的透镜(Na 0.25),以垂直角度将其定向到底物表面上。位于底物表面上的梁腰部在底物表面的直径为982 nm。波长为532 nm,距离基板的光源位于420 nm。tio 2被选为设计材料,其折射率为2。51185 + 0。01128 i在设计波长处,通过椭圆测量法对通过原子层沉积制备的118 nm厚的TIO 2膜进行了实验测量。有限差频域法被用作麦克斯韦求解器[17,40]。用4 nm cu-bic网格离散模拟区域,将最外面的五层分配为完美匹配的层,该层吸收了仿真空间内单个对象散射的电磁场。在TO框架内,配偶的介电函数桥接了设计材料E R和周围空气介质(E 0)的值,形成为E R = E 0 +ρ(E M-e 0)。在这里,设计变量ρ是连续的真实标量,范围为0至1。文献[16,40]中记录了TO的更多细节。我们的设计变量的初始值被设置为随机数字,均匀跨越0.5至0.7。我们采用了基于梯度的优化算法将设计值ρ向0或1驱动,其中ρ= 1的分布代表优化的结构。另外,为了鼓励设计变量的二线化,我们使用sigmoid函数实现了一种投影过滤方法。计算是在具有NVIDIA TESLA V100 SXM2(32 GB)的GPU节点上进行的。
非线性拓扑的询问要少得多。现有的进步集中在有限幅度和相当多种类型的非线性上。因此,实现很少与非线性的要求有关。在这里,我们通过确定非线性规则并证明其在现实世界实验中的相关性来探索非线性拓扑保护。我们采用手性对称性的优势,并确定其在一般非线性环境中延续的条件。将其应用于一维拓扑晶格,我们显示了零能量边缘状态的可能的演化路径,这些状态在拓扑上保留了拓扑上非动物阶段,而不管手性非线性的具体情况如何。基于具有非本地非线性的声学原型设计,我们从理论上,数值和实验上实现了非线性拓扑边缘状态,这些状态在所有非线性程度和方向上持续存在而无需任何频率移动。我们的发现揭示了一个与拓扑非客气性兼容的广泛非线性家族,为在非线性拓扑的新兴领域中建立了稳固的基础。
在同一反应堆中进行多步反应的两个或多个催化剂同时进行串联催化,可以使(BIO)药物和纤维制造能够变得更加可持续。在此报告,在合成的共价有机框架胶囊中,金属纳米颗粒和生物催化系统的共晶型化合物COFCAP-2的作用像是人工细胞,因为该细胞在300-400 nm cavities/egress/egress/egress/egress中被捕获在300-400 nm nm cavities in cacy/egress中。2 nm窗口。首先将COFCAP-2反应器涂在电极表面上,然后用Dinitrogen作为原料来制备十一例同期胺。胺在水中的环境条件下以> 99%的对映体过量量制备,包括药物中间体和活性药物成分。重要的是,COFCAP-2系统通过保留性能进行了15次回收,解决了酶的相对不稳定性和较差的回收能力,这阻碍了其广泛的实施,从而有效,低废物的化学物质和(生物)药物。