本研究探索了用多壁碳纳米管 (MWCNT) 增强的聚乳酸 (PLA) 复合材料的机械性能,重点研究了它们在三角形、倾斜和弯曲支架几何形状中的性能。拉伸试验表明,拉伸应力随 MWCNT 浓度增加而增加,最高可达 3 wt.%,但在 5 wt.% 时降低。较低浓度下机械性能的提高归因于 PLA 基质内 CNT 的均匀分散,从而促进了有效的负载传递。相反,在 5 wt.% 时,MWCNT 团聚会破坏基质的连续性,导致机械性能下降。CNT 与负载方向的对齐会显著影响性能,0° 打印角度由于优化的负载传递而产生更高的拉伸强度。支架的几何结构进一步影响挠度行为;观察到最大挠度随着 MWCNT 含量的增加而降低,特别是在 3 wt.% 时,但在 5 wt.% 时略有增加,表明由于聚集导致刚度降低。这项工作强调了 CNT 浓度和几何设计在优化 PLA/MWCNT 复合材料的机械特性中的重要性;揭示了改变几何形状如何影响应力分布对整体性能的影响。
Brightbio®细丝是从大自然自己的可再生单体和聚合物,工业侧面和天然颜色的化学修饰的,通过化学修饰的,交联的聚酯。可根据自然染料来量身定制的颜色。
摘要 通过三维(3D)打印制备多孔金属因其开放孔隙、定制化潜力而受到众多领域的广泛关注,但粉末床熔合技术制备的致密内部结构无法满足多孔材料在大比表面积需求场景下的特性。本文提出了一种通过粉末改性和数字光处理(DLP)3D打印多尺度多孔内部结构钛支架的策略。钛粉经改性后与丙烯酸树脂复合并保持球形。与原始粉末浆料相比,改性粉末浆料表现出更高的稳定性和更好的固化特性,且固含量为45vol%的改性粉末浆料的深度灵敏度提高了约72%。随后将固含量达到45vol%的浆料通过DLP 3D打印打印成绿色支架。烧结后,支架具有大孔(孔径约为 1 毫米)和内部开放的微孔(孔径约为 5.7–13.0 µ m)。此外,这些小尺寸(约 320 µ m)支架保留了足够的抗压强度
BB10265 生态学与进化 微观进化与宏观进化 (10 学分) 或 保护与全球变化生物学 (10 学分)
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2025 年 2 月 2 日发布。;https://doi.org/10.1101/2025.01.28.635095 doi:bioRxiv 预印本
版权所有:©2025 R.D.S.G.Campilho。被许可人克莱尔斯科学出版物。本文是根据Creative Commons归因(CC BY)许可证的条款和条件分发的开放访问文章。
您需要一个紧凑的,高级的RFID打印机/编码器,该打印机/编码器旨在完美无瑕 - 日常运行。依靠斑马的4英寸ZD621R桌面雨/RFID打印机/编码器或ZD611R(该行业)唯一的2英寸台式桌面雨RFID RFID打印机/编码器。获得全部:创新的体系结构,为我们不断扩展的打印机功能和软件提供动力。无与伦比的安全性可保护您的敏感数据并保护您免受网络攻击。带有直观菜单的大型4.3英寸全彩色LCD触摸显示屏。增强功能,通信和现场安装的媒体处理选项以及远程管理功能。一起,这些使您为您提供出色的印刷性能和行业领先的可靠性,以及无与伦比的智能和安全性,以使您前进。
机器学习正在通过加速发现清洁能源和其他应用的新材料来改变材料科学领域。一些研究人员强调了机器学习对革命材料发现的潜力,引用了诸如使用机器学习算法来预测材料特性并优化合成条件的例子。研究人员一直在探索在各个领域的机器学习和人工智能的使用,包括材料科学,化学和计算机视觉。*在材料科学中,研究人员使用机器学习来加速具有特定特性的新材料。*在化学中,已经应用了机器学习来预测分子的特性而无需其晶体结构。*在计算机视觉中,研究人员开发了使用神经网络将PDF文档转换为其他格式的技术。具体研究包括: *关于使用复发的神经网络进行鲁棒性PDF文档转换的研究 *关于从化学计量的深度表示学习以预测材料属性的研究的研究 *开发用于对Corpora进行深入数据探索的平台,使用机器学习的使用来加速这些领域,并在这些领域中发现了各种领域,并在这些领域中发现了各种领域,并在这些领域中表现出了各种挑战,并在机器上进行了挑战。 研究。贝叶斯优化是一种用于有效搜索和采样的方法,已应用于药物发现,有机材料设计和虚拟筛选。(2018)。(2020)。近年来材料和化学发现领域已取得了重大进步,研究人员采用各种机器学习技术来加速大型化学空间的探索和优化。研究人员还探索了数据驱动方法(例如K-均值聚类)的使用,以优化批处理贝叶斯优化。此外,为分子图生成而开发了语法变化自动编码器和连接树变异自动编码器之类的技术。其他值得注意的进步包括开发用于直接闭环材料发现的算法,序列生成模型的客观增强生成对抗网络以及Mol-Cyclegan,Mol-Cyclegan是分子优化的生成模型。此外,研究人员还采用了机器学习技术来加速虚拟筛查,以发现适合于COVID-19的治疗剂。作品建立在现有文献的基础上,包括拉斯穆森(Rasmussen)关于机器学习的高斯流程的论文,罗杰斯(Rogers)的扩展连通性指纹,而语言模型上的棕色是很少的学习者。该领域继续随着机器学习和计算机科学的新技术和方法的整合而继续发展,从而为材料和化学发现提供了更高效,更可扩展的方法。研究人员在开发设计化学和分子的生成模型方面取得了重大进展。一种方法涉及使用变压器生成分子,该分子可用于诸如材料设计之类的应用。(2019)。J. Chem。 物理。J. Chem。物理。另一种方法使用基于注意力的卷积编码器来预测抗癌化合物的灵敏度。除了生成模型外,研究人员还开发了预测化学反应和从基于文本的化学反应表示的实验程序的方法。这些方法涉及使用基于变压器的模型并探索超图表以预测返回途径。此外,研究人员还创建了机器人平台,以通过AI规划告知的有机化合物以及可以自动执行化学反应的移动机器人的流动合成。这些进步有可能加速发现新的化学物质和材料。在其他领域,研究人员在使用神经序列到序列模型以及为高级光聚合物材料设计照片酸性发生器时,在预测复杂有机化学反应的结果方面取得了进展。总体而言,这些进步证明了机器学习和AI在化学领域的力量,从而使新化学品和材料更快,更有效地发现了。最近的光构成方面的突破导致了材料科学的显着进步,特别是在阳离子聚合中。Crivello and Lam(1979)的研究引入了Triarylsulfonium盐作为新的光构体,随后发现了日记二元盐(Crivello&Lam,1977)。这些创新为更有效,更精确的材料发展铺平了道路。然而,随着对光刻化学的监管审查,研究人员必须专注于科学驱动的创新。Tvermoes and Speed(2019)的研究强调了需要解决这些挑战的最先进解决方案的必要性。此外,对光酸发生器的环境影响的调查还揭示了与使用相关的潜在风险。理论模型,例如密度功能理论,已经有助于理解不同条件下材料的行为。Runge and Gross的作品(1984)为该领域奠定了基础,而Barca等人的最新研究。(2020)演示了先进的计算方法在材料科学上的应用。人工智能(AI)的整合正在改变研究人员对待物质发现的方式。AI驱动的工具来预测物理化学特性和环境命运终点。此外,Ristoski等人展示的是聚合物发现的专家AI。合成方法中的创新也具有先进的材料科学。钯催化的芳基磺硫化的芳基硫化。(2017),为材料开发开辟了新的途径。通过Huang等人的工作实现了芳基硫盐的氧化还原中性植物。材料科学与AI的交集正在驱动该领域的范式转移。随着研究人员继续利用机器学习和人工智能的力量,我们可以期望在材料开发和发现中取得进一步的突破。参考文献:Barca,G。M. J.等。物理。一般原子和分子电子结构系统的最新发展。152,154102(2020)。Carrete,J.,Li,W.,Mingo,N.,Wang,S。和Cortarolo,S。通过高通量材料建模,找到了前所未有的低热传导性半导体半导体。修订版x 4,011019(2014)。Crivello,J。V.和Lam,J。H. W.与三硫硫硫盐的光启动阳离子聚合。J. Polym。 SCI。 A:Polym。 化学。 17,977–999(1979)。 Crivello,J。V.和Lam,J。H. W.二二元盐。 新的用于阳离子聚合的光构体。 大分子10,1307–1315(1977)。 Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。J. Polym。SCI。 A:Polym。 化学。 17,977–999(1979)。 Crivello,J。V.和Lam,J。H. W.二二元盐。 新的用于阳离子聚合的光构体。 大分子10,1307–1315(1977)。 Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。SCI。A:Polym。化学。17,977–999(1979)。 Crivello,J。V.和Lam,J。H. W.二二元盐。 新的用于阳离子聚合的光构体。 大分子10,1307–1315(1977)。 Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。17,977–999(1979)。Crivello,J。V.和Lam,J。H. W.二二元盐。新的用于阳离子聚合的光构体。大分子10,1307–1315(1977)。Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。Huang,C。等。通过光激活芳基硫盐的氧化还原性含量。org。Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。Lett。21,9688–9692(2019)。Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。ACS Catal。8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。8,579–583(2017)。Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J.Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。Opera模型,用于预测理化特性和环境命运终点。J.化学形式学10,10(2018)。Ristoski,P。等。专家AI用于聚合物发现。in:proc。第29届ACM信息与知识管理国际会议(ACM,2020年)。Runge,E。和Gross,E。K.时间相关系统的密度官能理论。物理。修订版Lett。 52,997(1984)。Lett。52,997(1984)。52,997(1984)。Shipley,G。和Dumpleton,G。Openshift for Developers:不耐烦的初学者指南(O'Reilly Media,Inc.,2016年)。探索了材料科学中的软机器人假肢和人工智能应用。讨论了AI技术的集成,突出了其潜在的好处和用途。