在本文中,基于高浓度下硅硅的分析建模,可用于硅酸盐在高浓度上的分析建模,适用于Boron扩散和二氧化硅的薄膜上的薄膜,这是基于大量微加工(BMM)技术的生物医学应用的设计和制造的先进结果,该硅电容传感器的生物医学传感器的设计和制造。The boron diffusion in silicon for the fabrication of the silicon capacitive sensors for biomedical applications and other Microelectromechanical Systems (MEMS) is a critical process, because the boron diffusion profile depends on the diffusion oxidizing (BBr 3 , B 2 O 3 )/non-oxidizing (BN – Boron Nitride) sources, and furthermore, the subsequent etching速率(因此蚀刻时间)取决于硅体积中硼浓度C的深度分布x,因此对此曲线C(x)的精确模拟允许进行膜设计和制造的准确蚀刻过程。为此,为硼扩散和蚀刻过程提供了分析显式关系,适用于上述情况(BBR 3,B 2 O 3或使用),也适用于非线性扩散方程的一般溶液的一般形式,其溶液的一般形式具有与浓度C的扩散系数D的扩散系数D的扩散系数D的脉冲,以D〜C m(M M)的浓度(m - a - a - a sil difff contection dife contection) c = c(x),也作为反向关系x = x(c),以便于C.
图林提出了反应 - 扩散系统来描述形态发生现象[1],反应 - 扩散系统引起了显着的兴趣。在生物学领域,反应 - 扩散系统可能会显示特定的模式,包括动物涂层,皮肤器官的形成,扩散模式的固定[2,3]和细胞分裂[4] [4] [4],这取决于初始条件,空间尺度和几何形状。求解有效表现出模式形成的反应 - 扩散系统,已经开发了数值方案,就像[4]中的工作一样。此外,要考虑几何形状,已经使用各种数值方法研究了曲面上的图案形成。使用[5,6]中的有限元法对表面上的反应 - 扩散系统进行数值求解。提出了修改的galerkin方法来解决隐式表面上的反应 - 扩散方程[7]。已使用有限的差异方法来求解弯曲表面上的部分微分方程[8-10],其中使用了窄带域中的最接近点方法,或使用三角形表面上的laplace -Beltrami操作员。在模式发展过程中,域的生长是基本变化的重要因素[11,12]。因此,许多作者[13 - 15]研究了生长领域的模式形成,包括各向同性[3,16]和各向异性生长[17]。可以实施域的生长以建模人脑的皮质折叠模式[12]。
靠近水生食物链底部的纤毛微生物要么游动去寻找猎物,要么附着在基质上并产生摄食流来捕获路过的颗粒。在这里,我们使用一种流行的粘性流体球形模型来表示附着和游动的纤毛虫,其滑动表面速度可以提供纤毛流动的解析表达式。我们求解了溶解营养物浓度的平流扩散方程,其中佩克莱特数 (Pe) 反映了扩散与平流时间尺度的比率。对于固定的流体动力学功率消耗,我们问什么纤毛表面速度可以最大化微生物表面的营养通量。我们发现优化进食的表面运动取决于 Pe。对于在有限 Pe 下自由游动的微生物来说,采用“跑步机”表面运动来游动是最佳选择,但在 Pe 较大的极限下,这种跑步机解与保持生物体静止的对称偶极表面速度之间没有区别。对于附着的微生物,在 Pe 低于临界值时,跑步机解决方案是最佳的进食方式,但在 Pe 值较大时,偶极表面运动是最佳的。我们在开环数值模拟和渐近分析中验证了这些结果,并使用了基于伴生的优化方法。我们的研究结果挑战了现有的“最佳进食就是在所有佩克莱特数上最佳游动”的说法,并为海洋微生物中附着和游动解决方案的普遍性提供了新的见解。
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
由于斯托克斯方程[1,2]的运动学可逆性,最令人信服的例证是 G.I.泰勒的库埃特细胞实验[3,4],低雷诺数下的流体混合需要平流(搅拌)和扩散[5,6]的相互作用。剪切引起的扩散混合增强,也称为泰勒扩散[7],是许多生物和人工系统的基础,从纤毛水生微生物对氧气、营养物质或化学信号的吸收,到微反应器和“芯片实验室”应用[8-12]。事实上,它代表了任何由平流扩散方程控制的非平衡松弛过程的基本特征[5],包括对流层上部和平流层的污染物扩散[13]。因此,设计最优混合方案是一个既具有基础性又具有实际意义的问题[14-17],并且与人们对将最优控制理论概念应用于非平衡物理[18-25]日益增长的兴趣相一致。传统上,全局混合效率通过施加一个初始模式(如溶质分布或温度分布)并通过其 L 2 /Sobolev 范数[26, 27]或 Shannon 熵的变化来表征搅拌对后者的影响[14, 28, 29]。局部混合也可以用 Lyapunov 指数来量化[2, 30]。最近,以混合前后粒子位置之间的互信息的形式引入了一种通用的无假设(即与模式无关)的全局混合效率度量[15]。在实验中,可以使用无损压缩算法从示踪数据中估计互信息 [ 31 ]。在这里,我们将这一新度量应用于无散度线性剪切流混合流体的问题。将时间相关的剪切速率定义为我们的协议,我们将互信息重新表示为后者的非线性函数,并精确求解最优控制问题,以在总剪切和总粘性耗散的约束下得出最优协议
单元2:牛顿的古典力学法律;相空间动力学,稳定性分析;中央力量运动;两体碰撞,散射在实验室和质量框架中;刚体动力学,惯性张量的力矩,非惯性框架和伪型;变分原理,拉格朗日和哈密顿的形式主义和运动方程;泊松支架和规范转换;对称,不变性和保护法,环状坐标;周期性运动,小振荡和正常模式;相对论,洛伦兹转化,相对论运动学和质量能量等效的特殊理论。单元3:电磁理论静电:高斯定律及其应用;拉普拉斯和泊松方程,边界价值问题;磁静态:生物武器定律,安培定理,电磁诱导;麦克斯韦(Maxwell)的方程式和线性各向同性介质中的方程式;界面的字段上的边界条件;标量和矢量电势;仪表不变性;自由空间,介电和导体中的电磁波;反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射;等离子体的分散关系; Maxwell方程的Loentz不变性;传输线和波导指南;带电颗粒在静态和均匀电磁场中的动力学;移动电荷,偶极子和智障电位的辐射。单元4:量子力学波粒对偶性;坐标和动量表示中的波函数;换向者和海森堡的不确定性原则;矩阵表示;狄拉克的胸罩和样式法; Schroedinger方程(时间依赖性和时间无关);特征值问题,例如粒子中的盒子,谐波振荡器等。;穿过障碍;运动中心的运动;轨道角动量,角动量代数,自旋;添加角动量;氢原子,自旋 - 轨道耦合,精细结构;时间独立的扰动理论和应用;变分方法; WKB近似;时间依赖的扰动理论和费米的黄金法则;选择规则;半古典辐射理论;散射,相移,部分波,天生近似的基本理论;相同的粒子,保利的排除原理,自旋统计量连接;相对论量子力学:klein gordon和dirac方程。单元5:热力学及其后果的热力学和统计物理定律;热力学潜力,麦克斯韦关系;化学潜力,平衡;相空间,微染色;微型典型,规范和宏大的合奏和分区功能;自由能和热力学量的连接;一阶相变;经典和量子统计,理想的费米和玻色气体;详细的平衡原则;黑体辐射和普朗克的分销法; Bose-Einstein凝结;随机步行和布朗运动;介绍非平衡过程;扩散方程。单元6:电子设备半导体设备物理,包括二极管,连接,晶体管,现场效应设备,HOMO和HETEROJUNTICT设备,设备结构,设备特性,频率依赖性和应用;光电设备,包括太阳能电池,光电探测器和LED;高频设备,包括
单元2:牛顿的古典力学法律;相空间动力学,稳定性分析;中央力量运动;两体碰撞,散射在实验室和质量框架中;刚体动力学,惯性张量的力矩,非惯性框架和伪型;变分原理,拉格朗日和哈密顿的形式主义和运动方程;泊松支架和规范转换;对称,不变性和保护法,环状坐标;周期性运动,小振荡和正常模式;相对论,洛伦兹转化,相对论运动学和质量能量等效的特殊理论。单元3:电磁理论静电:高斯定律及其应用;拉普拉斯和泊松方程,边界价值问题;磁静态:生物武器定律,安培定理,电磁诱导;麦克斯韦(Maxwell)的方程式和线性各向同性介质中的方程式;界面的字段上的边界条件;标量和矢量电势;仪表不变性;自由空间,介电和导体中的电磁波;反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射;等离子体的分散关系; Maxwell方程的Loentz不变性;传输线和波导指南;带电颗粒在静态和均匀电磁场中的动力学;移动电荷,偶极子和智障电位的辐射。单元4:量子力学波粒对偶性;坐标和动量表示中的波函数;换向者和海森堡的不确定性原则;矩阵表示;狄拉克的胸罩和样式法; Schroedinger方程(时间依赖性和时间无关);特征值问题,例如粒子中的盒子,谐波振荡器等。;穿过障碍;运动中心的运动;轨道角动量,角动量代数,自旋;添加角动量;氢原子,自旋 - 轨道耦合,精细结构;时间独立的扰动理论和应用;变分方法; WKB近似;时间依赖的扰动理论和费米的黄金法则;选择规则;半古典辐射理论;散射,相移,部分波,天生近似的基本理论;相同的粒子,保利的排除原理,自旋统计量连接;相对论量子力学:klein gordon和dirac方程。单元5:热力学及其后果的热力学和统计物理定律;热力学潜力,麦克斯韦关系;化学潜力,平衡;相空间,微染色;微型典型,规范和宏大的合奏和分区功能;自由能和热力学量的连接;一阶和二阶过渡;经典和量子统计,理想的费米和玻色气体;详细的平衡原则;黑体辐射和普朗克的分销法; Bose-Einstein凝结;随机步行和布朗运动;介绍非平衡过程;扩散方程。单元6:电子设备半导体设备物理,包括二极管,连接,晶体管,现场效应设备,HOMO和HETEROJUNTICT设备,设备结构,设备特性,频率依赖性和应用;光电设备,包括太阳能电池,光电探测器和LED;高频设备,包括
博士学位课程大纲。入学考试I.物理尺寸分析,载体代数和载体计算,线性代数,矩阵,特征值和特征向量的数学方法。一阶和二阶,傅立叶和拉普拉斯变换的线性普通微分方程。复杂分析,分析函数的要素; Taylor&Laurent系列;两极,残留和积分评估。基本概率理论,随机变量,二项式,泊松和正常分布。中央限制定理。II。 古典力学牛顿的定律,动力学系统,相位空间动态,稳定性分析,中心力运动,两次身体碰撞 - 在实验室和质量框架的中心散射,僵化的身体动态 - 惯性张力的力矩,非惯性框架,非惯性框架,非惯性框架和伪型,伪造,劳拉氏疗法和方程式,律师和方程式,方程式,方程,方程,方程,方程,方程式,方程式,方程式,方程,周期性运动:小振荡,正常模式,相对论 - 洛伦兹转化的特殊理论,相对论运动学和质量 - 能量等效性。 iii。 电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。 磁静态学:生物 - 萨瓦特定律,安培定理。 电磁诱导。 自由空间和线性各向同性介质中的麦克斯韦方程。 在自由空间中的电磁波。 电介质和导体。 反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。 iv。II。古典力学牛顿的定律,动力学系统,相位空间动态,稳定性分析,中心力运动,两次身体碰撞 - 在实验室和质量框架的中心散射,僵化的身体动态 - 惯性张力的力矩,非惯性框架,非惯性框架,非惯性框架和伪型,伪造,劳拉氏疗法和方程式,律师和方程式,方程式,方程,方程,方程,方程,方程式,方程式,方程式,方程,周期性运动:小振荡,正常模式,相对论 - 洛伦兹转化的特殊理论,相对论运动学和质量 - 能量等效性。iii。电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。磁静态学:生物 - 萨瓦特定律,安培定理。电磁诱导。自由空间和线性各向同性介质中的麦克斯韦方程。在自由空间中的电磁波。电介质和导体。反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。iv。静态和均匀电磁场中带电颗粒的动力学。量子力学波颗粒二元性,schrödinger方程(时间依赖性和时间无关),特征值问题(盒子中的粒子,谐波振荡器等。),通过屏障,坐标和动量表示的波动功能,换向器和海森堡不确定性原理,状态向量的迪拉克符号,运动中心的运动:轨道角动量,角动量,角度动量代数,自旋,自旋,添加了角臂;氢原子,严格的gerlach实验,时间独立的扰动理论和应用,变分方法,依赖时间的扰动理论和费米的黄金法则,选择规则。相同的粒子,保利排除原理,自旋统计量连接。V. Thermodynamic and Statistical Physics Laws of thermodynamics and their consequences, Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibria, Phase space, Micro- and Macro-states, Micro- canonical, canonical and grand-canonical ensembles, partition functions, Free energy and its connection with thermodynamic quantities, Classical and quantum statistics, Ideal Bose and Fermi gases, Principle of detailed平衡,黑体辐射和普朗克的分布定律,扩散方程,随机步行和布朗运动。