J. Alvarez* a,b,c,C.Marchaet A,B,C,A。Morisset A,B,D,L。Dai A,B,E,F,J.-P。 Kleider A,B,C,RaphaëlCabald,P.R。 B Sorbonne University,CNRS,巴黎电力和电子工程实验室,法国75252; C ile -de -France(IPVF)的C光伏研究所,30 Rd 128,91120 Palaiseau,法国; D同型太阳能电池实验室,新能源技术研究所(CEA -LITEN),50 Avenue du LacLéman,73375,Le Bourget -Du -Du -Du -Du -lac,法国; E界面和薄层物理实验室(LPICM),CNRS,Ecole Polytechnique,91128 Palaiseau,法国; f冷凝物质物理学实验室(LPMC),ÉcolePolytechnique,91128 Palaiseau,France
摘要为了确保线弧添加剂制造(WAAM)组件的几何精度,必须分析过程参数如何影响焊珠尺寸和形状。本文提出了一个正式且可重复的程序,通过增强全覆盖的光学扫描,重点关注通过冷金属传递(CMT)焊接过程实现的多层薄壁封闭标本,从而完全表征珠子的几何形状。已经根据过程参数计划制造了一系列圆形标本,并用GOM边缘投影3D光学扫描仪扫描,在Rhinoceros 3D CAD环境中进行了几何处理,并根据ANOVA方法对统计学上的分析进行了分析。已经评估了平均尺寸,横向波动,连续层之间的相互作用以及封闭层路径的割炬开关/关闭区域。已经建立了珠子大小和沉积参数之间的数值相关性。获得的结果还揭示了形状和尺寸的可变性,突出了控制几何学精度的挑战。最后,根据这些结果制定了过程规划指南。
每年,医疗都会进步重新定义医学领域,并证明自己是决定性的转折点。乙型肝炎,曾经是一种极具挑战性治愈的慢性疾病,现在可以在短短几周内为95%的患者消除肝炎,这要归功于革命性治疗,其中第一种疗法于2016年底得到批准。>乙型肝炎,曾经是一种极具挑战性治愈的慢性疾病,现在可以在短短几周内为95%的患者消除肝炎,这要归功于革命性治疗,其中第一种疗法于2016年底得到批准。最近,在治疗囊性纤维化方面已经有一个巨大的飞跃。对于大多数患者而言,现在曾经是致命疾病是什么,这是一种由新疗法控制的可控制的慢性病。,最近几个月,预防支气管炎的治疗方法大大减少了对婴儿住院的需求,从而减轻了数千个家庭的缓解。基因治疗的进步现在正在帮助治疗罕见的遗传疾病,例如脊柱肌肉萎缩,直接靶向分子水平的潜在原因。
明尼苏达大学明尼苏达超级计算研究所 1 ;明尼苏达大学共济会大脑发育研究所 2 ;圣路易斯华盛顿大学神经病学、儿科学、放射学和精神病学系 3 ;北卡罗来纳大学教堂山分校精神病学系 4 ;芝加哥大学心理学系 5 ;密歇根大学 6 ;PrimeNeuro 7 ;俄勒冈健康与科学大学 8 ;明尼苏达大学神经病学系 9 ;明尼苏达大学儿童发展研究所 10 ;明尼苏达大学儿科学系 11 ;明尼苏达大学放射学系 12 ,明尼苏达大学磁共振研究中心 13 ,乔治城大学大脑可塑性和恢复中心 14
近场扫描免疫(NFSI)[1]是一种强大的测量工具,可检测和诊断与电磁(EM)干扰偶联的故障印刷电路板(PCB)[2] [3]或集成电路(IC)[4]。最近的研究表明,如何处理该方法的结果,以估计辐射连续波(CW)干扰的易感性[5] [6]。但是,该方法受到过度测量时间的限制,在工业环境中可能会过时。测量时间取决于表面进行扫描,分析的频率范围和分辨率以及正在测试的设备(DUT)。减少扫描持续时间的一种方法是对扫描位置和利益频率的事先确定,也就是说,DUT在哪里表现出易感性最大值。完成了快速初始测试后,可以将CW模式下的NFSI配置为仅关注这些点和感兴趣的频率并捕获更精确的敏感性图。
F. Volpi、C. Boujrouf、M. Rusinowicz、S. Comby-Dassonneville、F. Mercier 等人。集成原位扫描电子显微镜的多功能纳米压痕仪的开发 - 应用于监测压电响应和机电故障。《薄膜固体》,2021 年,735,第 138891 页。�10.1016/j.tsf.2021.138891�。�hal-03428537�
真菌和细菌都生活在各种环境中,它们的相互作用在许多过程中都很重要,包括土壤健康,人类和动物生理以及生物技术应用。很难建立这些微生物之间相互作用的特异性。例如,与互动或反性相互作用相比,由于随机混合而导致的琐碎过程之间的分化。在这里,我们研究了菌丝形成生物膜形成液体培养物中浮游细菌生长共培养的单一形态学特征。也就是说,枯草芽孢杆菌的细菌共同援助因子附着于物种Hericium erinaceus的真菌菌丝。开发并利用了细菌中的细菌方法,可通过遏制在细胞外聚合物物质(EPS)和菌丝体整体细胞外基质(ECM)中连接细菌。由于产生EPS,启动结构似乎是由菌丝表面造成的。 T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。 由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。启动结构似乎是由菌丝表面造成的。T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。
背景和目标:阿尔茨海默病约占痴呆症病例的 70%。从 T1 加权结构磁共振扫描中可以轻松发现阿尔茨海默病引起的皮质和海马萎缩。由于在综合征的初期及时进行治疗干预对患病对象的病情进展和生活质量都有积极影响,因此阿尔茨海默病的诊断至关重要。因此,本研究依赖于开发一个强大而轻量级的 3D 框架 Brain-on-Cloud,该框架致力于通过改进我们最近的基于卷积长短期记忆的框架,并集成一组数据处理技术,以及调整模型超参数并评估其在独立测试数据上的诊断性能,从 3D 结构磁共振全脑扫描中有效学习与阿尔茨海默病相关的特征。方法:为此,在可扩展的 GPU 云服务上进行了四次连续实验。对它们进行比较,并调整最佳实验的超参数,直到达到最佳性能配置。同时,设计了两个分支。在 Brain-on-Cloud 的第一个分支中,在 OASIS-3 上进行训练、验证和测试。在第二个分支中,使用来自 ADNI-2 的未增强数据作为独立测试集,并评估 Brain-on-Cloud 的诊断性能以证明其稳健性和泛化能力。计算每个受试者的预测分数,并根据年龄、性别和简易精神状态检查进行分层。结果:在最佳状态下,Brain-on-Cloud 能够分别在 OASIS-3 和独立 ADNI-2 测试数据上以 92% 和 76% 的准确率、94% 和 82% 的灵敏度以及 96% 和 92% 的曲线下面积辨别阿尔茨海默病。结论:Brain-on-Cloud 是一种可靠、轻量且易于复制的框架,可用于通过 3D 结构磁共振全脑扫描自动诊断阿尔茨海默病,无需将大脑分割成各个部分即可表现出色。在保留大脑解剖结构的情况下,其应用和诊断能力可以扩展到其他认知障碍。由于其云特性、计算轻量和执行速度快,它还可以应用于实时诊断场景,提供及时的临床决策支持。
©作者在欧洲放射学学会的独家许可下。2022 Open Access本文均在创意共享归因4.0国际许可下获得许可,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您适当地归功于原始作者(S)和来源,并提供了与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。