前言 本文件是空间数据系统咨询委员会 (CCSDS) 制定的一套技术建议,旨在供参与空间机构在开发地面站和航天器的射频和调制系统时使用。这些建议允许每个机构内的实施组织以连贯的方式制定其管辖范围内的飞行和地面系统的兼容标准。从这些建议中衍生的机构标准可能只实现此处建议允许的可选功能子集,也可能包含建议未涉及的功能。为了建立一个机构可以开发标准化通信服务的共同框架,CCSDS 提倡采用分层系统架构。这些建议涉及数据系统的物理层。在物理层内,还有其他层,涵盖与射频和调制系统提供的通信服务有关的技术特性、政策约束和程序要素。本文件中包含的建议已分为代表技术、政策和程序事项的单独部分。这些无线电频率和调制系统建议书第 1 部分:地面站和航天器是为具有中等通信要求的常规近地和深空任务而制定的。第 2 部分将涉及数据中继卫星,并将满足需要本文档所涵盖的地面站未提供的服务的用户的需求。CCSDS 将继续制定第 1 部分:地面站和航天器的建议书,以确保反映新技术和当前的操作环境。未来制定的第 1 部分的新建议书将采用相同的格式,并旨在插入本书中。本文件的持有者应定期向 CCSDS 秘书处查询,地址为第 i 页,以确保他们的书是最新的。在正常发展过程中,预计本文件可能会扩展、删除或修改。因此,本推荐标准受 CCSDS 文件管理和变更控制程序的约束,这些程序在空间数据系统咨询委员会的组织和流程 (CCSDS A02.1-Y-4) 中定义。 CCSDS 文档的当前版本在 CCSDS 网站上维护:
尽管整个医疗保健行业对生成人工智能 (GenAI) 工具的兴趣迅速增长,但对于可能属于 FDA 管辖范围的 GenAI 产品(包括但不限于医疗器械)的监管方法仍然存在悬而未决的问题。为了本文的目的,我们使用术语“GenAI 设备”来指代设备,该术语在《联邦食品、药品和化妆品法案》(FD&C 法案)第 201(h) 节中定义,其中 GenAI 方法或模型是设备输出或功能不可或缺的一部分。与人工智能 (AI) 产品一样,GenAI 产品的功能可能为患者和公共健康带来独特的好处,但也为 FDA 带来了新的监管复杂性。与所有医疗器械一样,FDA 的监管监督适用于符合设备定义的 GenAI 产品;这种监督是基于风险的,考虑到产品的预期用途和技术特性。此外,FDA 长期以来一直提倡采用全产品生命周期 (TPLC) 方法来监督医疗器械,包括支持 AI 的设备,并致力于利用现有权力制定这些设备的监管方法,并探索可能需要新权力的选项。这一承诺对于采用旨在在设备使用寿命内比以往更快、更频繁迭代的技术的医疗器械来说越来越重要。支持 GenAI 的产品可能旨在为相同的输入提供可变的输出,可能经常依赖于旨在快速且频繁变化的模型,并且可能查询本身不是医疗器械的模型。TPLC 方法可能对未来安全有效的支持 GenAI 的医疗器械的管理仍然很重要。在本执行摘要中,我们重点介绍了 FDA 对支持 GenAI 的设备进行监督的方法,该方法与 FDA 对支持 AI 的设备进行监督的方法有许多相似之处。本执行摘要还讨论了 GenAI 的风险,其中一些风险可能广泛适用于 AI,以及当前在整个 TPLC 中对支持 AI 和支持 GenAI 的设备进行监管所面临的挑战。
(所含项目的详情在“欧洲投资银行碳足迹练习”部分提供)环境和社会评估环境评估该提案包括向 Everwood 可再生能源基金 V 基金(“基金”)投资高达 5000 万欧元,该基金是一只可再生能源(“RE”)基金,目标规模为 5 亿欧元。目标是支持实施 RE 项目,主要侧重于太阳能光伏项目。指示性管道仅包括西班牙的太阳能光伏项目。该基金还可能投资陆上风电项目和电池储能项目。所有项目都将位于欧盟,大多数投资计划在西班牙,但也考虑为意大利的项目提供融资。由于其技术特性,大多数计划预计将属于修订 EIA 指令 2011/92/EU 的指令 2014/52/EU 附件 II 的范围,由国家主管当局根据该指令附件 III 确定是否需要进行环境影响评估。若环境影响评估指令附件一中所列用于与电网互连的架空电线(如有),则在任何情况下均须接受环境影响评估程序。基金经理将有合同义务确保所有资助的计划均符合相关的欧盟环境指令(例如,环境影响评估指令 2014/52/EU 修订 2011/92/EU、栖息地 92/43/EEC 和鸟类指令 2009/147/EC)以及欧洲投资银行的环境和社会标准(如适用)。基金经理将被要求核实所有计划均不会对任何具有自然保护重要性的场所产生重大不利影响,并须从主管当局获得并向欧洲投资银行集团提供书面确认,或一份令欧洲投资银行集团满意的同等确认。该运营的温室气体排放存在很大的不确定性。然而,根据设想的投资组合,绝对排放量可以忽略不计,而该操作的相对排放量将避免每年 1125 kt CO2-eq。
开发能够增加日常治疗强度和时间以及提高患者积极性和兴趣的康复技术是科学研究的重点领域。到目前为止,将康复和临床方案与机器人、辅助设备、神经假体、脑机接口甚至智能手机或平板电脑应用程序等不同技术相结合已经取得了积极的成果[1]。最近,来自神经科学、心理学、医学、神经康复和运动康复的越来越多的科学证据表明,虚拟现实 (VR) 可能是康复不同疾病的最佳解决方案。事实上,由于其技术特性(即高生态效度、与其他医疗设备的智能接口、真实生活体验的 3D 模拟、用户与虚拟环境之间的自然交互)及其对人类感知和行为的强大影响,VR 为实现下一代认知/运动治疗和临床应用开辟了道路[2]。然而,尽管人们在这一主题上做出了许多努力,但对 VR 在康复和临床应用中的功效的清晰理解仍然遥遥无期。主要问题之一源于文献中术语的不当使用,其中“VR”一词通常用于描述不完全满足 VR 规范的技术(即,仅仅显示在显示器上的严肃游戏或视频游戏)。因此,更好地澄清术语以区分 VR 技术的两个方面,即沉浸式和非沉浸式 VR 非常重要。根据 Slater [3] 的说法,沉浸感由连接到系统的用户感觉和运动通道的数量和范围决定,并通过在整个系统中组合不同的技术来生成,该系统能够根据用户的头部和身体的运动实时传递变化的视觉信息,就像他/她处于等效的物理环境中一样 [3、4]。因此,在非沉浸式 VR 系统中,虚拟环境显示在标准计算机显示器上,交互仅限于使用鼠标、操纵杆或遥控器,而在沉浸式 VR 系统中(通常由新一代头戴式显示器或 Cave 自动虚拟环境系统 (CAVE) 构成),用户“被 3D 计算机生成的图像所包围”,可以使用自己的身体与虚拟环境进行自然的感觉运动交互。重要的是,证据表明,沉浸式 VR 能够引起临场感,即在虚拟环境中产生强烈的“身临其境”的感觉 [ 4 ],这种感觉让人能够以逼真的方式对虚拟刺激做出反应,并引发生理反应,就好像主体身处真实地点一样 [ 4 – 6 ]。先前的研究结果表明,存在感是虚拟环境中引发真实情绪的必要介质 [ 5 ],可以激活感觉运动整合的大脑机制和调节集中注意力的大脑网络 [ 7 ]。此外,研究表明,与沉浸感较低的 2D 虚拟现实相比,完全沉浸式虚拟现实更能引发存在感,而且重要的是,存在感可以影响虚拟治疗的有效性 [ 8 ],
分离,乳酸细菌的生化和分子表征从尼日利亚传统上发酵的酸奶饮料 *oyedokun n.o.1,2 Oyeleke S.B. 2,Abioye O.P. 2和Bala J.D. 2 1尼日利亚阿布贾的国家生物技术发展局食品与工业生物技术部,国家生物技术发展局。 2尼日利亚尼日利亚州米纳市的联邦科技大学生命科学学院微生物学系,P.M.B 65。 *通讯作者的电子邮件地址:nofisatoyedokun@gmail.com电话:+2348032471573摘要乳乳酸细菌(LAB)被确定为由于健康促进的影响,它们对人类和动物宿主施加的健康促进作用,因此被确定为必不可少的微生物。 这项研究是从尼日利亚的局部发酵的局部发酵牛奶产品的乳清中分离出的,它根据生理和生化特性来表征菌株,并使用16sRRNA测序识别它们。 无菌收集了总共32个样本,并在MRS和M17培养基上培养了乳清。 生理和生化结果表明,主要是杆和球形的分离生物包括革兰氏阳性和过氧化氢酶阴性物种。 生物体不仅可以在不同浓度的pH,温度和NaCl耐受和生长的能力上有所不同,而且能够独特地发酵十二种不同的糖。 随后使用PCR和序列分析通过分子技术筛选了获得的十种最理想的菌株。 关键词:Kindirmo,乳酸菌,发酵,乳清,益生菌。1,2 Oyeleke S.B.2,Abioye O.P.2和Bala J.D.2 1尼日利亚阿布贾的国家生物技术发展局食品与工业生物技术部,国家生物技术发展局。2尼日利亚尼日利亚州米纳市的联邦科技大学生命科学学院微生物学系,P.M.B 65。*通讯作者的电子邮件地址:nofisatoyedokun@gmail.com电话:+2348032471573摘要乳乳酸细菌(LAB)被确定为由于健康促进的影响,它们对人类和动物宿主施加的健康促进作用,因此被确定为必不可少的微生物。这项研究是从尼日利亚的局部发酵的局部发酵牛奶产品的乳清中分离出的,它根据生理和生化特性来表征菌株,并使用16sRRNA测序识别它们。无菌收集了总共32个样本,并在MRS和M17培养基上培养了乳清。生理和生化结果表明,主要是杆和球形的分离生物包括革兰氏阳性和过氧化氢酶阴性物种。生物体不仅可以在不同浓度的pH,温度和NaCl耐受和生长的能力上有所不同,而且能够独特地发酵十二种不同的糖。随后使用PCR和序列分析通过分子技术筛选了获得的十种最理想的菌株。关键词:Kindirmo,乳酸菌,发酵,乳清,益生菌。PCR结果表明,有98%的鉴定生物是保加利亚乳杆菌,乳杆菌乳杆菌,嗜酸乳杆菌,嗜热链球菌,嗜热链球菌,gasseri乳杆菌和lactobacillus plantarum。这些发现表明,Kindirmo可能是益生菌细菌的极好和潜在的来源,通常是益生菌的主要来源。建议进一步筛选和识别过程来确定菌株的功能,技术和益生菌特性。引言传统上已经在多种文化中生产和消费了不同类型的发酵食品,具体取决于地理位置的特殊性(Heinen等,2020)。由于乳酸细菌(LAB)表现出了压倒性的功能和技术特性,因此随着时间的流逝,它们一直是乳制品,制药和农业产业中大多数研究人员的关注主题。实验室已从动植物起源的众多发酵食品中分离出来,其营养和技术益处以及用作益生菌和功能性食品资源(Grajek等,2005; Chalat等,2011)。它们是革兰氏阳性,过氧化氢酶阴性的特殊且独特的群体,它们是仅产生乳酸细菌作为发酵最终产物的乳酸细菌的非孢子形成生物(Bassyouni等,2012)。本质上,牛奶被认为是实验室增殖的内在环境之一(Widyastuti和Febrisiantosa,2014年)。来自多种哺乳动物动物的牛奶已用于乳制品
等,2020;Williams 等,2021)。脱碳需要大规模快速而显著的供给侧工业转型,既要建立新的系统,也要淘汰现有的系统(Geels 等,2017;Grubert,2020b;McGlade 等,2018;Rissman 等,2020;Williams 等,2021;Zhao & Alexandroff,2019)。然而,脱碳能源系统所需的这种工业化的潜在规模在很大程度上取决于需求侧选择的行使程度(Pye 等,2021)。尽管对创建和部署新工业设施的过程进行了广泛的研究和审查,但明确关注逐步淘汰现有碳排放基础设施及其影响的研究却很少见(Rosenbloom & Rinscheid,2020)。此类研究主要侧重于限制未来化石燃料的开采和使用(Buck,2021;Muttitt & Kartha,2020;Piggot 等,2018;Piggot 等,2020;Zhao & Alexandroff,2019)或从先前行业解构中吸取的教训和框架(Normann,2019;Turnheim & Geels,2013)。详细的研究和建模侧重于预期的未来能源价格(以及潜在的价格冲击)等问题;资本投资轨迹;补救和回收的触发因素和实施;劳动力和培训要求;以及传统能源系统的最小可行规模——如果我们假设我们将成功脱碳,那么这些问题是必须研究的——但在文献中却明显缺失。缺乏对联合实施零碳排放和逐步淘汰化石燃料系统以及相关排放基础设施的协调规划的关注,对在实现美国国内目标(白宫,2021b)和国际气候目标(政府间气候变化专门委员会,2021)所需的快速时间内成功、公正的能源转型(Wang & Lo,2021)构成重大风险。这种风险主要是由于现有的排放化石燃料系统的社会嵌入性以及物质和政治主导地位造成了碳锁定(Unruh,2000;Wang & Lo,2021)。如果没有明确的规划,转型可能会面临重大挑战,例如当地经济衰退、获得高质量能源和基础设施系统的机会高度不平等,以及系统级特征(如可靠性、可访问性和可负担性)协调不力。已有证据表明,美国不协调的煤炭转型增加了出现负面结果的可能性,如经济困难(例如税收和工作损失)、无资金支持的义务(例如养老金、补救承诺、维护和监控)、身份和治理中断以及丧失复原力(Haggerty 等人,2018 年;Macey 和 Salovaara,2019 年;Roemer 和 Haggerty,2021 年)。在零碳和排放化石燃料系统共存的过渡时期,双方在运营上相互制约,我们在本评论中称之为过渡中期,要取得成功和公平,就需要有明确的规划,并以专门的指标为基础,协调零碳基础设施的建设和排放促进型化石燃料基础设施的淘汰。在过渡中期,零碳和碳排放基础设施都无法独自完全支持所有能源服务,而且整个系统并未针对这两种基础设施的社会技术特性进行优化。在过渡中期,适应不良、忽视协同机会和决策不协调的风险很高,尤其是当基础设施同时遇到过去经验中未充分描述的气候、技术和社会动态时。例如,可再生电力系统的发展可能会假设天然气备用发电机将始终可用,以提供低成本的电网支持服务(Phadke 等人,2020 年;Williams 等人,2021 年),或者特定地区的加油站在电动汽车普及率达到一定水平后可能同时面临盈利能力下降。需要专门为过渡动态设计的系统性能指标和其他评估工具,以衡量进展并及时发现新出现的挑战以应对这些挑战,特别是因为有些限制可以更容易地暂时放松以追求长期利益(例如,短期成本增加由长期成本节约和关注对能源负担影响的市场结构抵消),而其他限制则不然(例如,安全性和可靠性)。即使脱碳速度快到足以对负责任的加速构成挑战 (Skjølsvold & Coenen, 2021),也可能需要几十年的时间 (Williams et al., 2021),这将造成一段相当长的时间,在此期间,协调失败可能会加剧现有的结构性挑战 (Wang & Lo, 2021) 并产生新的挑战。能源转型,包括目前的脱碳转型,历来进展缓慢 (Fouquet, 2016)。几十年来,全球能源碳强度一直持平,化石燃料仍供应约 80% 的市场能源 (Hanna & Victor, 2021)。美国和其他地方可再生资源贡献的大幅增加,主要是对持续使用未减排的化石燃料的补充,而不是替代,尤其是在需求增长的情况下。尽管政策倾向于将转型视为“附加问题”(Aronoff 等人,2020 年),但在实践中,没有脱碳就无法完成脱碳转型,这意味着与排放相关的化石燃料基础设施和系统相关的企业、生计和生活方式将消失。除了就业和收入损失等明显挑战外,这种消失(以及对消失的预期)可能会给那些从事依赖化石能源活动的人带来非常具体、可能令人痛苦的社会技术想象和身份威胁(Grubert & Skinner,2017;Jasanoff & Kim,2009;Smith,2019),同时为现任政权行为者抵制转型创造了条件(Geels,2014),并最终减缓转型。实现公正转型的努力
特斯拉的电池技术享有盛誉,2013 年特斯拉 Model S 被 Motor Trend 评为“年度最佳汽车”。这一成就可以归因于其更长的续航里程、更快的加速和令人眼花缭乱的速度,所有这些都是由其电力电子设备和电池系统实现的。在本文中,我们将深入探讨特斯拉汽车中使用的电池系统的细节。具体来说,我们将重点介绍电池组,并涉及其他重要主题,例如机械或热规格、电气特性和特征、电池模块效率和保护功能。电动汽车 (EV) 电池系统是其主要的能量存储系统,主要由电池组成。设计电动汽车的电池系统需要多个领域的知识,包括电气工程、机械工程、热工程、材料科学等。特斯拉电池组的一个关键特性是其高效率、可靠性和安全性,使其成为高度模块化的设计。每个模块可以串联以产生所需的电压输出。特斯拉 Model S 电池组的电压约为 400 伏。特斯拉电池组的一个显著例子是 Model S P85 中的电池组,其容量为 90 kWh,重量超过 530 公斤。该电池组包含 16 个模块,由 7104 个独立电池组成。中央母线在将每个电池模块连接到接触器方面起着至关重要的作用,接触器为前后电动机供电。由于每个模块约为 5.5 kWh,而 Model S P85 的电池组中有 16 个这样的模块,因此它实际上相当于一个 84kWh 模块。特斯拉在其电池组中使用锂离子电池。每个电池都有不同的尺寸、形状和内部化学性质。所用电池的具体类型取决于所制造的型号;例如,特斯拉的 Model S 和 X 变体使用松下制造的 18650 锂离子电池。这些电池的尺寸是一个关键信息,因为它表明了它们的大小和形状。每个 18650 电芯直径为 18 毫米,高为 65 毫米,其命名法可以洞悉其尺寸和内部结构。电芯以串联和并联连接的方式排列,从而形成一个模块。电池组的设计和所用电芯类型会显著影响汽车的整体性能。特斯拉 Model S 电池组:技术特性详细分析特斯拉的电池组(用于 Model S)由松下与特斯拉合作开发,专为电动汽车 (EV) 应用而设计。该电芯的主要特性如下:| 参数 | 规格 | | --- | --- | | 容量 | 3.4 Ah | | 电芯能量 | 12.4Wh | | 标称电压 | 3.66 V | | 体积能量密度 | 755 Wh/L | | 重量能量密度 | 254Wh/Kg | | 内阻 | 30m Ohm | | 电芯质量 | 49g | | 电芯体积 | 0。0165L | 特斯拉 Model S 电池组由多个称为模块的较小电池组成,每个模块采用 6S 74P 配置。这意味着六个电池串联连接,每个系列都有 74 个电池并联连接。每个模块的额定连续电流为 500A,峰值电流为 750Amps。电池组采用液体冷却来维持其温度并防止过热,过热可能导致热失控和火灾危险。冷却系统使用热交换器管道,该管道将冷却液输送到模块内部。 ### 引线键合技术的优势 特斯拉 Model S 电池组中使用的引线键合技术有几个优点: * 连接过程中不会向电池引入热量。 * 导线充当安全保险丝,在电池发生故障时提高整个系统的安全性。 * 它提高了可制造性。 ### 引线键合技术的缺点 但是,这种技术也有一些缺点: * 由于增加了导线,它增加了电阻。 * 它会在系统中产生热量,从而降低运行效率。 * 电池模块的规格如下:| 参数 | 规格 | | --- | --- | | 标称电压(电池模块) | 22.8V/模块 | | 充电截止电压(电池模块) | 25.2V/模块 | | 放电截止电压(电池模块) | 19.8/模块 | | 最大放电电流(10 秒) | 750 安培 | | 高度 | 3.1 英寸 | | 宽度 | 11.9 英寸 | | 长度 | 26.2 英寸 | | 重量 | 55 磅 | 热管理系统是一项关键的安全功能,它通过去除电池组内部的热量来确保电池组的温度保持在一定阈值内。### 图片参考本文中的一些图片取自 EV Tech Explained,这是一个提供深入解释电动汽车技术的频道。特斯拉电池组的关键在于将各个电池彼此隔离。在弯道处,Kapton 胶带可确保最佳绝缘效果。水乙二醇溶液用作冷却剂,当冷却剂流过电池组时,温度会升高。下图显示了高强度测试后电池模块内不同点的温度波动。蓝线表示冷却剂入口,红线表示出口。图中还显示了最大和最小电池温度。测试最初设置为 20°C,涉及 250 安培充电和放电循环。如图所示,模块之间存在低温偏差。保持相似的温度至关重要,因为它会影响内部电阻和整体电池组特性。冷却剂管的波浪形设计增加了表面积和封装效率。电池组本身作为结构构件,位于汽车底部。它为车辆提供刚性和强度,降低重心并改善平衡性和稳定性。每个凹槽可容纳一个电池模块,纵向构件可加强底盘的抗冲击和侧弯能力。内部构件为模块放置创建网格,同时提高基础强度和物理刚度。如果发生火灾,它们会将模块彼此隔离。下图显示了所有 16 个模块的放置位置。高压母线连接在上方,红点表示正极连接,黑色表示负极连接。母线由厚铜镀锡板制成。电池管理系统 (BMS) 对于安全、监控过充、过放、充电状态、放电状态、温度等至关重要。下图显示了基于德州仪器 bq76PL536A-Q1 3 至 6 串联锂离子电池监控器和二次保护的特斯拉 Model-S BMS。BMS 集成到每个模块中,监控电池寿命、温度和其他因素。特斯拉 Model S 的电池监控系统 (BMS) 通过充电放电循环监控电池,并使用 SPI 与其他串联 BMS 模块进行数据通信。每个模块的 BMS 都充当从属设备,通过隔离屏障与主 BMS 通信,主 BMS 控制主接触器并通过 CAN 总线与 ECU 和充电器通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可以找到,因此很难验证它。通过隔离屏障与控制主接触器的主 BMS 进行通信,并通过 CAN 总线与 ECU 和充电器进行通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可用,因此很难验证它。通过隔离屏障与控制主接触器的主 BMS 进行通信,并通过 CAN 总线与 ECU 和充电器进行通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可用,因此很难验证它。