替格瑞洛被归类为环戊基三唑并嘧啶。6 它是一种非竞争性变构拮抗剂,可与 P2Y12 受体可逆结合。10 由于它与 ADP 受体可逆结合,其生物利用度为 36%,疗效取决于血浆浓度。9 替格瑞洛不是前体药物,不需要代谢即可发挥作用;然而,其代谢物在抑制 P2Y12 受体方面同样有效。4,6 它在肝脏中由 CYP450 同工酶 CYP3A4 和 CYP3A5 代谢。3,6,9 由 CYP3A4 和 CYP3A5 代谢或抑制 CYP3A4 和 CYP3A5 的药物可能会延迟替格瑞洛的代谢。 4,9 与替格瑞洛同时使用会影响地高辛的代谢,因此应仔细监测地高辛的浓度。6,9,10
摘要 - 在高等教育中,培养鼓励学生参与现实世界挑战的环境对于专业发展至关重要。这一原则为我们与第八学期纳米技术工程专业学生的合作努力支撑。通过创新的方法,例如合成结合菠萝果皮的聚合物纤维,我们解决了环境问题并利用菠萝废物的未开发潜力。菠萝行业每年产生大量的非利用废物,主要是茎,牙冠和果皮,占整个水果的67%。菠萝果皮富含生物活性化合物(如多酚)对化妆品行业的应用有望,如果将它们纳入合适的输送系统中,则可能会增强产品(例如提拉配方)。在目前的工作中,使用商业挤出机合成了装有10%,20%和30%菠萝果皮粉(PP)的聚乳酸(PLA)和多碳酸酯(PCL)纤维。傅立叶变换红外和差异扫描量热法证实了由于形成了新的化学键和相互作用的有效PP掺入纤维中。使用扫描电子显微镜(SEM)进行的形态表征表明,纤维的横截面长度从3.7μm到90.19μm。高性能液相色谱和叶核方法评估了酚类化合物含量和释放速率。PLA纤维具有20%的PP,显示出酚类化合物的最大保留率,为1243.69±234.14 µg化合物/ g纤维),而PCL纤维在24小时内显示出迅速释放,高达95.79±5.94%。这些结果表明,商业挤出机可以在化妆工业中可能使用的聚合物微纤维作为菠萝果皮中酚类化合物的递送系统的可行性。
量子发射体(例如离子、原子、 NV 中心或量子点)与谐振器光学模式的强耦合和较长的腔光子寿命对于量子光学在基础研究和实用量子技术的众多应用中至关重要。有望满足这些要求的系统是光纤微腔 [1-4]、离子束蚀刻介质谐振器 [5] 或微组装结构 [6]。发射体和腔光子之间的强耦合可以通过很小的腔体体积和非常短的光学腔来实现。然而,对于许多现实的量子装置,由于技术困难,腔镜不能放置得太近:对于囚禁离子系统,短腔会导致介质镜带电并导致射频离子囚禁场畸变 [7];对于中性原子,由于需要将原子输送到腔内以及需要从光学侧面进入腔体进行冷却和捕获[8,9],短腔长受到限制。因此,用于量子光学装置应用的光学腔需要结合强耦合率和低损耗,同时保持镜子足够远。实现强耦合的一种方法是使腔体处于(近)同心配置中 [10]。这使腔中心的光模场腰部最小化,从而使发射极-光子耦合最大化,但是由于镜子上的模场直径较大,会增加削波损耗,从而限制了由腔协同性所能实现的最大腔性能。增加腔中心场振幅的另一种方法是通过调制镜子轮廓来创建某种干涉图案 [11]。我们假设我们不受球形腔的限制,即我们可以使用例如聚焦离子束铣削或激光烧蚀来创建任意形状的镜子,如第 6 节中更详细讨论的那样。在这里,我们用数字方式探索了腔镜的调制球面轮廓,这些轮廓会产生高度局部化的腔模式,同时保持较低的损耗。通过这种方法,我们发现了一种镜子轮廓的流形,它可以提供比同心腔更低的损耗率,从而实现更高的协同性。与我们之前的工作 [ 11 ] 相比,在这里我们不需要先验地了解我们想要生成的确切模式形状(特别是特定的