摘要:由于细菌中抗生素耐药性的增加,对新型抗菌化合物的需求正在迅速增长。因此,迫切需要采用替代方法。抗菌肽(AMP)是有希望的,因为它们是先天免疫系统的自然存在,并且对各种微生物表现出显着的广谱活性和高选择性。海洋无脊椎动物是天然放大器的主要资源。因此,来自cnidarian Moon果冻的aurelia aurita和ctenophore梳子果冻mnemiopsis leidyi的cDNA表达(EST)库是在大肠杆菌中构建的。两个文库的无细胞分级细胞提取物(<3 kDa)连续筛选肽,以防止使用晶体紫罗兰色分析的肽形成机会性病原体。十个单独的克隆的3 kDa比例显示出对克雷伯氏菌的生物纤维预防活性和表皮葡萄球菌的有希望的生物预防活性。对各自的活性限制插入物进行测序,允许识别编码肽(10-22 aa)的小型ORF,随后将其化学合成以验证其抑制潜力。尽管这些肽可能是从EST插入物的随机翻译中是人工产物的,但针对K. oxytoca,Pseudomonas铜绿假单胞菌,表皮链球菌和S. aureus的生物纤维预防效应是针对浓度依赖性依赖于peStration beefterative依赖于pefterative的peptection的peptection的peptertive的peptertive的peptection。The impact of BiP_Aa_2, BiP_Aa_5, and BiP_Aa_6 on the dynamic biofilm formation of K. oxytoca was further validated in microfluidic flow cells, demonstrating a significant reduction in biofilm thickness and volume by BiP_Aa_2 and BiP_Aa_5.总体而言,海洋无脊椎动物衍生的放大器的结构特征,其物理化学特性及其有希望的抗体膜效应突出了它们是发现新抗菌剂的有吸引力的候选者。
摘要 牛皮癣是一种可在任何年龄发生的慢性疾病。这种疾病与影响全世界所有人的炎症问题有关。由于年龄、性别、地理位置、种族、遗传和环境因素等多种因素,牛皮癣在斯堪的纳维亚人中比在亚洲和非洲人群中更常见。免疫刺激、遗传因素、抗菌肽和其他重要诱因(如药物、免疫接种、感染、创伤、压力、肥胖、饮酒、吸烟、空气污染、日晒和特定疾病)会导致牛皮癣。目前正在进行大量临床研究,并且有可用的治疗替代方案。然而,这些疗法只能改善症状,不能完全治愈;它们还具有危险和不良的副作用。天然产品最近因其有效性、安全性和低毒性而广受欢迎。各种纳米载体的天然制剂,如脂质体、脂质球、纳米凝胶、乳化凝胶、纳米结构脂质载体、纳米海绵、纳米纤维、脂质体、纳米微凝胶、纳米乳剂、纳米球、立方体、微针、纳米胶束、醇质体、纳米晶体和泡沫,对银屑病治疗做出了重大贡献并促进了银屑病治疗的发展。这些含有植物化学物质的新型纳米制剂解决了传统剂型中天然产物的几个问题,例如不稳定性、溶解性差和生物利用度有限。本文回顾了一些有趣的植物化学物质,以及它们可能的分子靶位和作用机制,这可能有助于开发更具体、更有选择性的抗银屑病药物。探索和了解植物化学物质的功能将有助于开发更多针对特定部位的银屑病治疗技术。本综述总结了使用载有植物成分的草药或多种草药纳米载体治疗牛皮癣疾病及其机制方法。
磷酸肌醇 3-激酶 (PI3K) 是控制许多细胞功能(包括生长、存活、代谢和增殖)的重要途径。该途径由三个主要成分组成:雷帕霉素的机制靶点 (mTOR)、蛋白激酶 B (Akt) 和 PI3K。肌醇脂质的磷酸化是由 PI3K 激活引起的,这反过来又激活了 Akt。Akt 促进细胞周期进程并抑制促凋亡蛋白,控制细胞存活和增殖所必需的几种下游途径 [1]。癌症通常表现出 PI3K/AKT/mTOR 通路失调,这会导致细胞增殖不受控制和对凋亡产生抵抗力。PI3K 的突变或扩增,或其下游效应物的改变,可导致该途径过度活跃。这种异常信号与许多癌症有关,包括乳腺癌、肺癌和前列腺癌 [2]。因此,关注 PI3K 通路已成为一种可行的癌症治疗方法,其目标是恢复正常的细胞调节并防止肿瘤发展。益生菌是一种对宿主有益的活微生物,因其在肠道健康中的作用以及在癌症预防和治疗中的潜力而备受关注。某些益生菌菌株会产生细菌素,这是一种可以抑制致病菌生长的抗菌肽。最近的研究将重点扩大到包括这些细菌素的抗癌特性。除了诱导癌细胞凋亡和抑制肿瘤发展外,细菌素还会改变免疫系统 [3]。益生菌中的细菌素已显示出通过不同机制靶向癌细胞的潜力。例如,它们可以与细胞膜相互作用,导致细胞裂解或细胞功能改变。此外,细菌素可能会影响与癌症相关的信号通路,例如 PI3K 通路。通过影响这些途径,细菌素可能有助于控制肿瘤进展并增强现有疗法的疗效 [4, 5]。在本研究中,我们探讨了细菌素与肿瘤细胞的相互作用
抽象背景炎症性肠病(IBD)的病因尚不清楚,但涉及遗传学和环境因素,包括肠道菌群。的确,胃肠道免疫系统向肠道微生物群的加剧激活发生在遗传易感的宿主中,并在环境的影响下发生。例如,大多数IBD易感性基因座都位于与免疫反应有关的基因中,例如caspase招募域成员9(Card9)。然而,在Card9缺乏症的背景下,基因型与微生物群对结肠炎的相对影响仍然未知。结果Card9基因直接有助于从硫酸葡萄糖钠(DSS)诱导的结肠炎中恢复,通过诱导细胞因子IL-22的结肠表达和抗菌肽REG3β和REG3γ和Reg3γ,独立于微生物群。另一方面,调节生产AHR配体的微生物群的能力是必需的,这导致结肠中产生IL-22,从而促进结肠炎后的恢复。此外,交叉促进实验表明,断奶后5周,断奶前从护理母亲传播的微生物群对幼犬的色氨酸代谢具有比幼犬自己的基因型更强烈的影响。结论这些结果表明,Card9及其效应IL-22在介导微生物群依赖性和微生物群依赖性的指导中介导DSS诱导的结肠炎的恢复中的作用。card9基因型可调节产生AHR配体的微生物群代谢能力,但是在断奶前植入WT或“健康”微生物群可以覆盖这种作用。它突出了免疫系统和微生物群之间发生断奶反应的重要性,对宿主代谢和免疫功能一生。更好地理解遗传学对微生物群代谢的影响是为患有复杂炎症性疾病的患者发展有效的治疗策略的关键。关键词肠道菌群,遗传学,代谢,card9,IL-22,TRP代谢,AHR配体,乳酸杆菌
摘要。背景:口腔感染与阿尔茨海默氏病的病因有关。目的:检测微生物生物膜内的淀粉样蛋白(a)。方法:将牙周疾病的新鲜牙齿(n = 87)分为A组(n = 11),原发根管感染和B组(n = 21)(n = 21),牙髓牙齿治疗失败,通过Gutta Percha root -Finfinfinfinforling识别。生物膜特征。用抗A抗体免疫抑制了脱矿质的蜡嵌入牙齿切片和矿化的微积分生物膜。使用抗A抗体或在阿拉德岩树脂中处理用于超微结构的丙烯酸树脂组织免疫机染色(IGS)的分类丙烯酸树脂组织免疫机胶染色(IGS)。结果:SEM证明了含有细胞外聚合物物质(EPS)和水通道的多生物生物膜的原位演示和gutta植物。对A组的脱水蜡切片的补液进行了免疫组织化学,表现出对外部(微积分和斑块)和所有受感染区域的染色。在B组中,Gutta Percha Biofimfm Igss给出了a的确定结果。 具有感染的核内(A组)和20%的Gutta Percha Bioflm(B组)EPS EPS的透射电子显微镜含有可变大小的电子致密的纤维,其中一些是人类A纤维的典型。在B组中,Gutta Percha Biofimfm Igss给出了a的确定结果。具有感染的核内(A组)和20%的Gutta Percha Bioflm(B组)EPS EPS的透射电子显微镜含有可变大小的电子致密的纤维,其中一些是人类A纤维的典型。结论:这项研究检测到牙周和牙髓和牙髓自然生物膜的EPS中可溶性和不溶性A纤维,这强烈表明其作为抗菌肽在对抗局部感染中的作用,并具有潜在的风险,可在大脑中进行交叉播种。
昆虫食草动物经常遇到植物防御分子,但是对其免疫系统的生理和生态后果尚未完全了解。大多数试图将植物防御性化学水平与草食动物免疫反应相关的研究使用了自然种群或物种水平的植物防御性化学化学差异。然而,这可能将植物防御化学的影响与可能影响草食动物免疫表达的其他潜在植物性状差异混淆。我们使用了人造饮食,其中含有已知数量的植物毒素(4-甲基磺丁基丁基异硫基硫酸盐; 4MSOB-ITC或ITC,这是葡萄糖素糖磷酸在草药上的分解产物),以明显探索植物对植物毒素的影响,并探索植物对植物的影响,并探索植物的影响,并反应植物的影响。 (Lepidoptera:Noctuidae)通常以含葡萄糖苷的植物为食。毛毛虫以高分为中心的饮食中的毛毛虫经历了降低的生存率和增长率。高浓度的ITC抑制了几种类型的血细胞和黑素化活性的外观,这是针对寄生虫膜翅目和微生物病原体的关键防御能力。t。ni体液免疫,仅在基于含有高水平ITC的饮食中的毛毛虫中,仅在含有无ITC饮食提供的caterpillars的饮食中,仅在含有高水平的ITC的饮食中,仅抗菌肽(AMP)基因lebocin和Gallerimycin显着上调。令人惊讶的是,具有非致病性大肠杆菌菌株的挑战,导致AMP基因cecropin的上调。以高浓度的植物毒素为食,阻碍了毛毛虫的发育,降低了细胞免疫力,但对体液上的免疫性产生了混合影响。我们的发现提供了对食草动物饮食组成对昆虫性能的影响的新见解,这表明了特定的植物防御毒素,从而塑造了植物性的免疫力和营养相互作用。
抗菌素耐药性 (AMR) 对全球健康构成严重威胁,凸显了创新抗生素发现策略的迫切需求。虽然肽设计方面的最新进展已经产生了许多抗菌剂,但由于不可预测且资源密集的反复试验方法,通过实验优化这些分子仍然具有挑战性。在这里,我们介绍了 APEX 生成优化 (APEX GO),这是一个生成人工智能 (AI) 框架,它将基于变压器的变分自动编码器与贝叶斯优化相结合,以设计和优化抗菌肽。与筛选现有分子固定数据库的传统监督学习方法不同,APEX GO 通过任意修改模板肽来生成全新的肽序列,代表了肽设计和抗生素发现的范式转变。我们的框架引入了一种新的肽变分自动编码器,具有设计和多样性约束,以保持与特定模板的相似性,同时实现序列创新。这项工作代表了在任何环境下对生成贝叶斯优化的首次体外和体内实验验证。 APEX GO 使用十种已灭绝的肽作为模板,生成了具有增强抗菌性能的优化衍生物。我们合成了 100 种优化肽,并进行了全面的体外表征,包括抗菌活性、作用机制、二级结构和细胞毒性评估。值得注意的是,APEX GO 在增强对临床相关革兰氏阴性病原体的抗菌活性方面实现了出色的 85% 真实实验命中率和 72% 的成功率,优于以前报道的抗生素发现和优化方法。在鲍曼不动杆菌感染的临床前小鼠模型中,几种 AI 优化的分子(最显著的是 mammuthusin-3 和 mylodonin-2 的衍生物)表现出强大的抗感染活性,可与广泛使用的最后手段抗生素多粘菌素 B 相媲美或超过多粘菌素 B。这些发现凸显了 APEX GO 作为一种用于肽设计和抗生素优化的新型生成式 AI 方法的潜力,为加速抗生素发现和应对日益严峻的 AMR 挑战提供了强有力的工具。
粘液在胃肠道(GI)区中起着关键作用,是宿主防御系统的组成部分,并为与居民微生物组建立了共生关系的序幕。粘液是一种类似凝胶的物质,沿着肠道的上皮衬里形成保护性屏障,是针对病原体和环境侮辱的第一道防线(图1)。1,2肠粘液代表了一个复杂的生物环境,由杯状细胞分泌的粘蛋白与肠肠上皮细胞分泌的抗菌肽/蛋白质混合在一起,并泛滥到肠道隐窝底部。3,4粘蛋白是大型糖蛋白,在粘液中形成聚合物网格,为该保护层提供粘弹性和结构。5超出其物理屏障功能,粘蛋白聚糖还可以作为微生物的营养来源,从而促进了有助于肠道稳态的共生细菌的生长。6此外,粘蛋白是影响宿主对微生物定植的反应的免疫调节剂,并有助于维持平衡和耐受的免疫环境。3粘液,粘蛋白和肠道微生物组之间的复杂相互作用突出了它们在保留肠道健康方面的集体意义,并强调了在与营养不良和胃肠道疾病有关的情况下,了解这些动态相互作用对治疗干预措施的重要性。结肠粘液被组织为由密集的内部和松散的外层组成的功能性双层。这些层的完整性或组成中的破坏内部粘液层与上皮细胞相邻,用作防止微生物与宿主上皮之间直接接触的物理屏障。由紧密堆积的高糖基化的粘蛋白蛋白组成,该层充当物理网状,可防止病原体的扩散,但可以使营养物质渗透到上皮细胞上。较少密度和更渗透的外粘液层会产生富含营养的栖息地,从而促进有益微生物的定殖和生长。,这些粘液层协调了一个精心调整的空间布置,不仅可以保护宿主免受有害病原体的侵害,而且还可以培养一个多样化稳定的微生物群落。
摘要 某些细菌群的多重耐药性 (MDR) 与医院内感染 (HAI) 有关,这代表着全球传染病诊断和治疗方面日益严峻的挑战。它给全球医疗机构的卫生管理带来了大多数问题;这涉及到功效和有效性,从而破坏了世界卫生组织 (WHO) 等医疗机构在遏制新出现和重新出现的公共卫生重大疾病方面的努力。多重耐药性 (MDR) 是由于自古以来对抗生素的管理不当造成的,这种抗生素的不当使用,尤其是广谱抗生素的使用,导致了抗菌素耐药性细菌的出现和传播,从而导致在医疗机构环境中选择了高度耐药的细菌病原体。医院内感染,特别是由 MDR 细菌引起的感染,通常很难治疗,导致各种副作用,包括延长住院时间和增加治疗费用,从而影响人体的天然微生物群。同样,新型抗菌剂的开发也滞后,目前很少有新型抗菌剂在开发中。因此,寻找治疗院内感染的新方法可能有助于克服细菌病原体的多重耐药性挑战。目前,正在通过修改现有药物、使用新型金属复合物、抗菌肽和反义抗菌疗法来开发新型治疗剂,以找到解决院内致病菌多重耐药性的持久解决方案。关键词:抗菌药物、细菌、多重耐药、院内、耐药性。引言院内感染(医院内感染)也称为医院相关感染 (HAI),在世界范围内的死亡率中占较大比例,并且与住院时间延长和治疗费用大幅增加有关。根据欧洲疾病预防和控制中心 (ECDC) 的数据,欧洲急症医院和长期护理机构每年共发生 890 万例 HAI(Sursten 等人,2018 年)。感染风险较高的人群包括重症监护、外科、肿瘤科/血液科、烧伤科的患者以及接受器官移植的患者和新生儿(WHO,2018 年)。最常见的院内感染是导管相关尿路感染 (CAUTI)、手术部位感染 (SSI)、中心静脉导管相关血流感染 (CLABSI)、呼吸机相关肺炎 (VAP) 和艰难梭菌感染 (CDI)(Stygal 等人,2020 年)。细菌性院内感染的几种来源
雌激素水平降低会导致黏膜组织抗菌肽和免疫球蛋白A减少、巨噬细胞和树突状细胞功能受损、尿路黏膜屏障变薄以及正常微生物群改变,从而影响泌尿生殖系统黏膜免疫,这些因素共同增加泌尿道感染的可能性。1,2 2 绝经后人群的泌尿道感染诊断需要考虑症状和培养结果。如果培养结果为阳性,而没有排尿困难、尿急、疼痛或发热,则称为无症状菌尿。这种疾病在绝经后人群中很常见,不需要治疗。如果尿频或排尿困难而没有培养结果为阳性,可能提示更年期泌尿生殖系统综合征,这种疾病影响到高达84%的绝经期人群。对于老年人,如果没有泌尿系统症状或全身感染体征,而出现谵妄或嗜睡症状且培养结果为阳性,则不能认定为泌尿道感染;需要进一步评估。 2,3 3 治疗通常应包括短期窄谱抗生素治疗。呋喃妥因(速释剂 50 mg,每日 4 次,或缓释剂 100 mg,每日 2 次)连续 5 天是无并发症尿路感染的一线治疗;甲氧苄啶-磺胺甲恶唑(800 mg/160 mg,每日 2 次),连续 3 天或磷霉素 1 剂(3 g)是替代方案。不应进行治愈测试和通过常规尿培养进行定期监测。每次出现症状时都应进行尿液分析和尿液培养。4 4 可使用多种药物策略预防复发性尿路感染。阴道雌激素通过改善粘膜厚度、免疫功能和阴道菌群来减少复发,应予以推荐。每日低剂量抗生素可减少尿路感染的频率;但是,应该权衡其益处和副作用的风险。单剂量预防(呋喃妥因 100 毫克、甲氧苄啶-磺胺甲恶唑 800 毫克/160 毫克或头孢氨苄 250 毫克)适用于性交后尿路感染。马尿素(1 克,每天两次)在肾脏中代谢为甲醛,其效果并不逊于每日服用抗生素。2,4 应试验 3-12 个月;继续使用抗生素超过 1 年没有证据支持。5 非处方产品和预防尿路感染的行为建议缺乏有力证据 酸化尿液的蔓越莓产品、益生菌和 D-甘露糖(一种与大肠杆菌结合的天然糖)的效果不一。2,4 建议经常排尿、从前向后擦拭或穿棉质内衣可能没有任何好处。2,5