内上皮片上的图案形成。4-8 在这些例子中,外部或浅层的约束或限制是使更深层结构(在生理压缩下)继续正常发育的关键机械因素。9,10 通过结合实验和计算数据的“形态力学”方法,Taber 等人 11,12 发现鸡视杯形成过程中的内陷是由外胚层和细胞外基质等外部限制因素驱动的。在发育中的脊椎动物大脑中,最近已经探索了壁内细胞和组织力学。13,14 已经讨论了成长中的大脑对周围颅骨或颅腔形成的可能生物力学影响(在成骨细胞增殖和骨化等事件中,通过拉伸经历这些事件的细胞)。 15 相反,有人提出,骨化的头骨(作为硬囊)调节大脑形态,包括大脑皮层的脑回形成,16 尽管实验和数学研究表明脑回形成可能通过大脑固有的机制进行物理处理。17-19 先前关于哺乳动物大脑-头骨机械关系的研究主要集中在骨化/矿化发生后的阶段。在早期(即成骨前)阶段,对鸡胚进行的研究提出了一个模型,其中早期神经管弯曲的出现(最前端的前脑向腹侧弯曲的现象)可能是由腹侧底层脊索或前肠施加的可能物理限制来解释的,这些结构向前延伸的程度小于前脑,20,21
抽象背景:脑瘫(CP)对儿童健康产生了重大负担,痉挛性类型是最普遍的表现。这种神经系统疾病影响每1000个出生2-3个,源于各种产前,围产期或产后脑损伤。通常影响的结局指标包括肌肉张力,疼痛和运动范围,分别通过修改后的Ashworth量表,Wong-Baker的面部疼痛评级量表和Popliteal角度测量评估。虽然保守的静态拉伸是一种广泛使用的痉挛治疗选择,但由于暂时的效果,其功效仍然尚无定论。相反,由Harman Kabat和Margaret Knott在1940年代引入的本体感受性神经肌肉促进(PNF)伸展运动,在改善功能结果和减少诸如中风和CP(例如中风和CP)神经系统条件下的痉挛方面表现出了希望。然而,有限的证据证明了其比较疗效与常规静态拉伸有关减少痉挛性脑瘫儿童的痉挛性的证据。因此,本研究旨在将PNF拉伸和静态拉伸的有效性比较降低痉挛性脑性麻痹儿童的下肢痉挛,疼痛和popliteal角度为次要目标。
摘要:传统的电子和光子设备本质上是2D,并且由于它们被捏造的底物。然而,世界并不是在流动和刺激:许多应用会从软设备和非平面几何形状中受益,例如与柔软,曲线和动态生物体的柔软,曲线和动态表面相连。此不匹配要求可机械变形(弯曲,折叠,扭曲,拉伸或压缩)的灵活和可拉伸设备,而不会损坏其有用的特性。在这里,我们提供了最先进的材料,设计,加工和设备技术的概述,这些技术是迅速发展的且可拉伸光子学的快速发展区域的概述。我们对关键的促成技术的看法将在这一领域中定义新的增长机会,因为新兴的可振奋和可伸缩的光子学的应用继续展开。
别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
我们先前报道了由IP-S光蛋白用两光子聚合物(TPP)制造的单细胞粘附微拉伸测试仪(SCAμTT),用于研究定义的拉伸负荷下单个细胞连接的机制。该平台的主要局限性是IP-S的自动荧光,IP-S的自发荧光,TPP制造的光素,它显着增加了背景信号并使拉伸细胞的荧光成像变得困难。在这项研究中,我们报告了一种新的SCAμTT平台的设计和制造,该平台可减轻自动荧光,并证明其在单个细胞对成像中的能力,因为其相互连接被拉伸。使用IP-S和IP-VISIO(一种具有降低自动荧光的光蛋白)的两种物质设计,我们显示了平台的自动荧光显着降低。此外,通过将孔与金涂层整合到底物上,几乎完全缓解了自动荧光对成像的影响。使用这个新平台,我们证明了一对上皮细胞的能力,因为它们被拉伸至250%的应变,从而使我们能够观察到连接破裂和F-肌动蛋白回收,同时记录交界处的800 kPa应力的积累。此处介绍的平台和方法可能有可能详细研究细胞 - 细胞连接中的机制和机械转导的机制,并改善机械生物学应用中其他TPP平台的设计。
Q.3 在两个相互垂直的平面上,在弹性材料中的特定点施加 160 N/mm 2(拉伸)和 120 N/mm 2(压缩)的直接应力。材料中的主应力限制为 200 N/mm 2(拉伸)。计算给定平面上该点的允许剪应力值。还要确定该点的另一个主应力值和最大剪应力值。使用莫尔圆验证您的答案。
摘要触摸敏感的可拉伸电子皮肤(E金)对软机器人,假肢,生物模仿者和生物传感器保持了希望。但是,长期以来的挑战是伸展压力读数的干扰。解决此问题,我们引入了一个本质上可拉伸的杂化压力传感器(SHRP),该响应压力传感器(SHRP)由层压板组成,该层压板具有几乎没有导电的多孔纳米复合材料和位于两个可拉伸电极之间的超薄介电层。SHRP的压电和压电响应的联合压电和压电响应可以使超高压力灵敏度有效地消除拉伸诱导的干扰。我们的发现的基础是经过实验验证的电子模型。在实际应用中,安装在孔径上的shrps在人手腕上表现出安全,精确的触诊,并符合轮廓的ob o骨。SHRP的首次亮相有望显着扩大E-Skins的垂直应用。