在输入输出子组件的设计中,为了向各个电路提供必要的电压,避免它们之间的串扰,同时保持电路板设计简单。逻辑电路只需要一个电源,+5伏;电源驱动器、放大器和其他特殊电路,其中一些是混合集成电路或分立元件电路,有时需要两个或三个电压。但电路板只包含一个接地平面和另一个电压供应平面。电压平面被细分,每个细分连接一个电压,并且罐和 Hatpack 排列在板的表面上,以便提供必要的电压,并且低电平逻辑电路与提供高达 3 安培的高电流功率驱动器很好地分开。
当前研究中提出的MPA结构包括一个典型的贴片天线(图1a – d),其接地平面被跨表面吸收器结构取代(图1b – e)。它可能是潜在的RFID读取器,因为它不仅可以在正常的天线模式下运行,而且性能提高,而且还可以作为抑制散射的吸收器,这可以有效地减少多路径环境中RFID系统的错误读数。该贴片印在1毫米厚的廉价FR4环氧基底物上。由4x4单位细胞矩阵组成的元图吸收器结构。使用激光蚀刻机(LPKF Protolaser S4)来实现斑块和吸收器结构,如图1 d,e。总体MPA厚度仅为2.53毫米。
摘要。在此手稿中,已经提出了用于无线应用的紧凑型MIMO天线。提出的天线由F形散热器组成,中心的圆形插槽和底物另一侧的矩形接地平面。所提出的天线的总尺寸为48×48 mm2。天线设计为在两个频带上工作 - 1.5至2.3 GHz和3.7至4.2 GHz,分别为1.8 GHz和3.9 GHz。还可以通过使用各种参数(例如信封相关系数(ECC),多样性增益(DG),总主动反射系数(TARC)等来观察天线的多样性性能。ECC的值为0.02,显示了天线的良好多样性性能。为了验证模拟和测量结果,已制造了所提出的天线,并彼此吻合。
印刷电路板 (PCB) 用于各种电子应用,如计算机、手机、立体声音响等。使用 PCB 的好处之一是电子电路可以更紧凑、更小,并可以放置在合适的薄板上。电路板通常由绝缘玻璃环氧材料(如 FR-4)组成,其一侧或两侧层压有薄层铜箔。镀孔/通孔钻至所需层,以确保组件与接地平面之间的连接。使用通孔技术,每个组件都有引线,这些引线穿过孔并焊接到另一侧电路中的连接垫上。使用的另一种方法是“表面贴装方法”,其中组件通过组件上的 J 形或 L 形支脚直接连接到印刷电路(产品制造方式 2017)。
本文系统地比较了采用相同 CMOS 后端工艺的 CPW、慢波 CPW、微带和慢波微带的传输线特性阻抗与 Q 因子之间的关系。结果表明,最佳 Q 因子的特性阻抗取决于慢波传输线的地线间距。虽然从传播模式的角度来看,介质相似,但当慢波 CPW 的特性阻抗为 §23 ȍ 和慢波微带线的特性阻抗为 §43 ȍ 时,慢波传输线可实现 60 GHz 最佳 Q 因子,并且接地平面间隙越宽,Q 因子就越大。此外,结果表明,在芯片面积相同的情况下,慢波 CPW 的最佳 Q 因子比慢波微带高 12%。这里提供的数据可用于选择 CMOS 中 S-MS 和 S-CPW 无源器件的 Z 0 值,以最大化传输线 Q 因子。
1.电源电压浪涌超出绝对最大电压范围。2.电路板上的开关电路可能会导致电路板内部出现高压尖峰,并传播到电路板上的其他设备。3.外部连接(例如外部电缆上的电容电荷、天线拾取的外部开关噪声和电感负载)可能会产生电压尖峰。4.由于接地不良导致接地平面上出现过大噪声。5.I/O 切换产生电压过冲或下冲。6.由于电气噪声环境中的屏蔽不良而产生 EMI(电磁干扰)。7.不正确的上电顺序可能会对设备施加非预期的电压水平或极性。8.ESD 事件会导致设备损坏或削弱设备,使其更容易受到未来 EOS 事件的影响。9.如果电流很高或持续时间很长,闩锁事件可能会导致 EOS 损坏。
系统连接续 图 8 显示了如何在单个 I2S 总线上连接两个 I2S 麦克风。R41–R44 用于抑制或终止各自的迹线。如果迹线在电气上很长,则它们应该是阻抗在 50-120 欧姆范围内的受控阻抗迹线。当迹线的长度(以英寸为单位)大于上升/下降时间(以 nS 为单位)的 2 倍时,该迹线被视为在电气上很长。即使迹线在电气上不长,R41-R44 也可以用作阻尼电阻(27-51 欧姆),通过减少由杂散电感和电容引起的过冲和振铃来改善信号完整性。无论哪种情况,R41-R44 都应尽可能靠近驱动迹线的设备(信号源)。如果电容器和麦克风之间的走线电感最小化,去耦电容器(C32-33 和 C34-35)最有效。这可以通过使用短而宽的走线来实现。如果在麦克风下方使用接地平面,则将电容器接地垫直接连接到带有过孔的平面,而无需使用任何走线。
耦合器,37.5-42.5 GHz (PSX40D05V2W) PSX40D05V2W 是一款双向合成器,覆盖 37.5-42.5 GHz,如图 6 所示。输入端口设计为直接通过引线键合到功率放大器 MMIC。组合(输出)端口与从部件接地平面侧发射的标准矩形波导兼容。波导通过盖子在合成器输出的顶部进行反向短路。波导盖、终端电阻和电阻盖已预先组装在合成器部件上。提供适合 #0 螺钉(或公制 M1.6)的螺丝孔和适合 1mm 直径引脚的对准特征,以便精确安装到基板上。20 dB 定向耦合器集成在合成器中,带有引线键合接口。耦合端口配置用于监控输出功率(而不是反射功率),并且可以处于开路状态而不会影响性能。定向耦合器的相反端口在内部终止。输入端口设计为具有 90 度(正交)相位差。Nuvotronics 建议在组合两个放大器时将 PSX40D05V2W 组合器与 PSX20D05W(无定向耦合器的组合器)配对作为功率分配器,以保持正确的相位。
• 让高速设备远离连接器和电线。IC 内部的金属化层、键合线和引线框架与附近的其他导体之间可能会发生耦合(例如串扰)。这些耦合的电压和电流会大大增加高频下的 CM 辐射。因此,请让高速设备远离所有连接器、电线、电缆和其他导体。唯一的例外是专用于该 IC 的高速连接器(例如主板连接器)。当产品最终组装时,内部的柔性电线和电缆可能位于各种位置。确保任何高速设备附近都不能有电线或电缆。(没有内部电线或电缆的产品通常更容易符合 EMC 标准。)散热器是导体的一个例子,显然不能远离要冷却的 IC。但散热器会像任何其他导体一样受到来自 IC 内部的耦合信号的影响。通常的技术是使用热导体将散热器与 IC 隔离(只要满足散热目标,越厚越好),然后使用许多非常短的连接将散热器“接地”到本地接地平面(通常可以使用机械固定装置)。
我们讨论了超导体-绝缘体-超导体 (SIS) 结的材料加工极限,这些结的能隙足够高,可以实现 THz 异差混频器检测。这项工作的重点是器件结构,该结构具有 Nb 作为基层、由薄 Al 邻近层的等离子体氮化形成的隧道势垒以及 NbTiN 作为对电极材料。这些 SIS 结通常表现出 3.5 mV 的总间隙电压,对于电阻 - 面积乘积 RNA = 20 pm',亚间隙与正常状态电阻比 Rsg / RN = 15。开发该工艺的目的是将结集成到混频器天线结构中,该结构将 NbTili 用作接地平面和线路层。针对 Al 层等离子体氮化期间应用的条件,解决了 RNA 产品的运行间可重复性和控制。通过控制直流浮动电位、N 2 压力和曝光时间来研究铝的射频等离子体氮化。处理在接近室温下进行,以减少变量数量。金属膜层中的应力保持在低压缩范围内。最近的接收器结果将在本次研讨会上发表的另一项工作中讨论。[1]