摘要。本文介绍了一种基于深度学习的系统,用于实时面罩检测,旨在增强面具合规性至关重要的环境中的公共卫生监测。利用卷积神经网络(CNN)用Tensorflow和Keras构建,模型E ff e ff e ff将工具分类为戴面膜或不戴面膜的模型。数据预处理和八月技术提高了各种输入信息的鲁棒性,从而确保了高性能和概括性。在Google Colab上开发的,该系统利用基于云的资源进行E FFI CIENT模型培训和部署,从而消除了对当地大量硬件的需求。它支持实时图像分析,可扩展用于连续视频监视,使其适用于大规模应用。与Google Drive集成简化了数据管理,简化了更新和部署。该系统提供了一种可访问的解决方案,用于在公共空间中掩盖合规性监视,OFF的准确性,可扩展性和易于部署性。future工作将专注于通过掩码类型的多类分类,自动响应的IoT集成以及Edge设备部署以提高可访问性。该工具展示了AI在促进公共环境中的健康和安全方面的潜力。
摘要 我们提出 AI-Lyricist:一个根据所需词汇和 MIDI 文件作为输入来生成新颖而有意义的歌词的系统。这项任务涉及多项挑战,包括自动识别旋律并从多声道音乐中提取音节模板、生成与输入音乐风格和音节对齐相匹配的创意歌词以及满足词汇约束。为了应对这些挑战,我们提出了一个自动歌词生成系统,该系统由四个模块组成:(1)音乐结构分析器,用于从给定的 MIDI 文件中获取音乐结构和音节模板,利用预期音节数的概念更好地识别旋律;(2)基于 SeqGAN 的歌词生成器,通过策略梯度进行多对抗训练优化,使用双鉴别器进行文本质量和音节对齐;(3)深度耦合的音乐歌词嵌入模型,将音乐和歌词投射到联合空间中,以便公平比较旋律和歌词约束;以及一个名为 (4) Polisher 的模块,通过对生成器应用掩码并替换要学习的单词来满足词汇约束。我们在超过 7,000 个音乐歌词对的数据集上训练了我们的模型,并通过主题、情感和流派方面的手动注释标签进行了增强。客观和主观评价均表明 AI-Lyricist 在所提出的任务上的表现优于最先进的技术。
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
深度学习方法已显示出在医学图像分析 [1] 中的高性能潜力,尤其是计算机辅助诊断的分类。然而,解释它们的决策并非易事,这可能有助于获得更好的结果并了解它们的可信度。已经开发了许多方法来解释分类器的决策 [2]–[7],但它们的输出并不总是有意义的,而且仍然难以解释。在本文中,我们将 [8] 的方法改编为 3D 医学图像,以找出网络对定量数据进行分类的基础。事实上,定量数据可以从不同的医学成像模式中获得,例如用正电子发射断层扫描 (PET) 获得的结合电位图或从结构磁共振成像 (MRI) 中提取的灰质 (GM) 概率图。我们的应用重点是检测阿尔茨海默病 (AD),这是一种诱导 GM 萎缩的神经退行性综合征。我们使用从 T1 加权 (T1w) MRI 中提取的 GM 概率图(萎缩的代理)作为输入。该过程包括两个不同的部分:首先训练卷积神经网络 (CNN) 以将 AD 与对照对象进行分类,然后固定网络的权重并训练掩码以防止网络正确分类训练后已正确分类的所有对象。这项工作的目标是评估最初为自然图像开发的可视化方法是否适用于 3D 医学图像,并利用它来更好地理解分类网络所做的决策。这项工作是原创作品,尚未在其他地方提交。
摘要:有效但充分的探索仍然是强化学习(RL)的关键挑战,尤其是对于马尔可夫决策过程(MDP),具有巨大的动作空间。以前的方法通常涉及将原始动作空间投射到潜在空间或采用环境动作面具以减少动作的可能性。尽管如此,这些方法通常缺乏可解释性或依赖专家知识。在这项研究中,我们介绍了一种新颖的方法,用于自动降低具有离散动作空间的环境中的动作空间,同时保持可解释性。所提出的方法以双重目的学习了特定于州的面具:(1)消除对MDP最小影响的动作,以及(2)在MDP中具有相同行为后果的汇总行动。具体来说,我们介绍了一个新颖的概念,称为国家(BMA)的行动(BMA)来量化MDP内行动的行为后果,并设计一个专门的掩码模型以确保其二进制性质。至关重要的是,我们提出了一个实用的学习程序,用于培训掩模模型,利用任何RL策略收集的过渡数据。我们的方法旨在插入插件和适应所有RL策略,为了验证其有效性,将其集成到两种突出的RL算法中,即DQN和PPO。从迷宫,Atari和µRTS2获得的实验结果显示在RL学习过程中有很大的加速,并且引入方法促进了促进的性能改善。
近年来的抽象背景,三维(3D)球体模型在科学研究中变得越来越流行,因为它们提供了一种与生理相关的微环境,可以模仿体内条件。与传统的二维细胞培养方法相比,它可以更好地了解3D球体测定法具有优势,因为它可以更好地了解细胞行为,药物功效和毒性。但是,使用3D球体测定法受到了用于球体图像分析的自动化和用户友好的工具的阻碍,这会对这些测定的可重复性和吞吐量产生不利影响。为解决这些问题的结果,我们开发了一种完全自动化的,基于Web的工具,称为Spheroscan,该工具使用了带有卷积神经网络(R-CNN)的名为“掩码区域”的深度学习框架进行图像检测和细分。为了开发一个可以从一系列实验条件中应用于球体图像的深度学习模型,我们使用使用Incucyte Live细胞分析系统和常规显微镜捕获的球体图像训练了该模型。使用验证和测试数据集对经过培训模型的性能评估显示出令人鼓舞的结果。结论Spheroscan允许轻松分析大量图像,并提供交互式可视化功能,以更深入地了解数据。我们的工具代表了球体图像分析的重大进步,并将促进科学研究中3D球体模型的广泛采用。可在https://github.com/funtionalurosology/spheroscan上获得有关Spheroscan的源代码和详细的Spheroscan教程。
摘要。预测隐藏在com-plex上下文中的对象的实例级掩码是伪装实例分割(CIS)的目标,这一任务因伪装的obs obsptss and Anckatiks之间的惊人相似之处而复杂。伪装观察的各种外观,包括不同的角度,部分可见性和模棱两可的信息,进一步加剧了这一挑战。先前的作品考虑在高不确定性区域内clasifulsiful sifialpixels,而无需考虑其文本语义,从而导致许多假阳性。我们提出了一种称为Mask2Camouflage的新颖方法,该方法同时增强了上下文特征的建模,并完善了实例级别的预测地图。mask2Camouflage利用多尺度功能集成了骨干线中提取的功能。然后,引入了全局细化的交叉注意模块(GCA),以补充前景面罩和背景掩盖,以减少假阳性。fur-hoverore,通过模拟全球换档聚类过程,我们介绍了全球偏移的多头自我注意力(GSA),该过程使对象查询不仅可以从早期功能中捕获信息,还可以从结构性概念中捕获信息,从而降低与评估的数据验证的掩体对象检测任务中的类内部问题。与15种最先进的方法相比,我们的Mask2Camouflage显着提高了伪装实例细分的性能。我们的代码可在https://github.com/underlmao/mask2camouflage上找到。
摘要 — 这是预接受版本,要阅读最终版本,请访问 IEEE Xplore 上的《IEEE 地球科学和遥感学报》。本文解决了自动检测人造结构尤其是非常高分辨率 (VHR) 合成孔径雷达 (SAR) 图像中的建筑物这一极具挑战性的问题。在这方面,本文有两大贡献:首先,它提出了一种新颖的通用工作流程,该工作流程首先将星载 TomoSAR 点云(通过使用称为 SAR 断层扫描 (TomoSAR) 的先进干涉技术处理 VHR SAR 图像堆栈生成)在辅助信息的帮助下(即使用公开可用的 2D 建筑物足迹或采用光学图像分类方案)分为建筑物和非建筑物,然后将提取的建筑物点反投影到 SAR 成像坐标上,以自动生成大规模基准标记(建筑物/非建筑物)SAR 数据集。其次,这些标记数据集(即建筑物掩码)已用于构建和训练最先进的深度全卷积神经网络,并附加条件随机场(表示为循环神经网络)来检测单个 VHR SAR 图像中的建筑物区域。这种级联结构已成功应用于计算机视觉和遥感领域,用于光学图像分类,但据我们所知,尚未应用于 SAR 图像。结果
现有监督神经元分割方法的性能高度取决于准确注释的数量,尤其是应用于大型电子显微镜(EM)数据时。通过从未标记的数据中提取语义信息,自我监督的方法可以证明下游任务的性能,其中掩码映像模型(MIM)在其从掩盖的IMEM中恢复原始信息时已广泛使用了蒙版图像模型(MIM)。然而,由于EM图像中高度的结构局部性,并且存在相当大的噪声,因此许多素数很少有歧视性信息,从而使MIM预处理对神经元细分任务有效。为了克服这一挑战,我们提出了一个基于决策的MIM,该MIM利用强化学习(RL)自动搜索最佳的图像掩盖率和掩盖策略。由于巨大的勘探空间,使用单代机Agent RL进行体素预测是不切实际的。因此,我们将每个输入补丁视为具有共同策略的代理,允许多代理协作。此外,这种多代理模型可以在体素之间取决于依赖性,这对下游分割任务是有益的。表明,我们的方法对神经元分割任务的替代自我监督方法具有重要的影响。代码可在https://github.com/ydchen0806/dbmim上使用。
4单粒子教程15 4.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.2预处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.3粒子采摘。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 4.4无参考的2D类平均。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 4.5从头3D模型生成。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36 4.6无监督的3D分类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 4.7高分辨率3D改进。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 4.8掩码创建和后处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 4.9 CTF和畸变细化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 4.10贝叶斯抛光。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 4.11局部分辨率估计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 4.12检查惯用性。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>54 4.13总结。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>55 div>