摘要 我们提出 AI-Lyricist:一个根据所需词汇和 MIDI 文件作为输入来生成新颖而有意义的歌词的系统。这项任务涉及多项挑战,包括自动识别旋律并从多声道音乐中提取音节模板、生成与输入音乐风格和音节对齐相匹配的创意歌词以及满足词汇约束。为了应对这些挑战,我们提出了一个自动歌词生成系统,该系统由四个模块组成:(1)音乐结构分析器,用于从给定的 MIDI 文件中获取音乐结构和音节模板,利用预期音节数的概念更好地识别旋律;(2)基于 SeqGAN 的歌词生成器,通过策略梯度进行多对抗训练优化,使用双鉴别器进行文本质量和音节对齐;(3)深度耦合的音乐歌词嵌入模型,将音乐和歌词投射到联合空间中,以便公平比较旋律和歌词约束;以及一个名为 (4) Polisher 的模块,通过对生成器应用掩码并替换要学习的单词来满足词汇约束。我们在超过 7,000 个音乐歌词对的数据集上训练了我们的模型,并通过主题、情感和流派方面的手动注释标签进行了增强。客观和主观评价均表明 AI-Lyricist 在所提出的任务上的表现优于最先进的技术。