摘要:研究了混合助剂和配方杀菌剂在空中施用条件下对喷雾雾化和田间移动的影响。进行了高速风洞测试,以确定所选处理方法产生的液滴大小。这些处理方法包括“空白”(水加非离子表面活性剂)以及另外五种含有配方杀菌剂的溶液,其中四种含有额外的助剂。风洞测试使用扁平扇形喷嘴和为田间试验选择的操作参数(喷雾压力、喷嘴方向和空速)测量液滴大小。然后在田间评估这些处理方法的幅内和顺风沉积情况,并使用测量结果的质量平衡将每种配方产品处理方法与参考处理方法进行比较。风洞实验结果表明,配方产品混合罐产生的液滴大小与水和非离子表面活性剂“空白”参考相比有显著差异
摘要:研究了混合助剂和配方杀菌剂在空中施用条件下对喷雾雾化和田间移动的影响。进行了高速风洞测试,以确定所选处理方法产生的液滴大小。这些处理方法包括“空白”(水加非离子表面活性剂)以及另外五种含有配方杀菌剂的溶液,其中四种含有额外的助剂。风洞测试使用扁平扇形喷嘴和为田间试验选择的操作参数(喷雾压力、喷嘴方向和空速)测量液滴大小。然后在田间评估这些处理方法的幅内和顺风沉积情况,并使用测量结果的质量平衡将每种配方产品处理方法与参考处理方法进行比较。风洞实验结果表明,配方产品混合罐产生的液滴大小与水和非离子表面活性剂“空白”参考相比有显著差异
a)电池管理系统中的电池管理系统BMS BMS,该系统管理可充电电池的电子设备,无论是销售还是电池组成为确保电动汽车安全性的关键因素,它通过确保销售在其形状操作参数中使用销售来保护用户和电池。BMS提供的外侧通常包括监视电池提供更好的保护估计电池通过操作所有状态的电池不断优化电池性能报告对外部设备的电池性能报告操作状态b)电动电动机保护系统电池保护系统(BPS)将保护电池几乎可以使电池受到几乎所有外部注意事件,从而导致易受伤害的任何外部注意事件。c)EV电池可靠性提高了关注电动电动电池可靠性的重点,EV电池的可靠性涉及识别对该元素的故障类型测试所识别的可靠性功能,因此电池寿命将延长。
Carnot电池(CB)已被开发为竞争性的大规模储能技术。但是,低温CB的低功率到功率(P2P)抑制其应用。考虑到可能的实际操作方案,在本工作中提出了一种新型的低温CB配置,它通过将液化天然气(LNG)冷能将其整合到有机朗金循环(ORC)中作为散热器。通过结合ORC和LNG涡轮机产生的功率来实现P2P效率的突破。通过已建立的热力学模型进行了LNG-CB和碱性CB(水冷却)的能量和自我分析。还研究了关键操作参数对系统性能的影响。所提出的LNG-CB在将P2P效率提高2.31升至4.52倍的方面,比基本CB具有巨大的优势。在120 O C的热量存储温度和7 MPa的LNG压力下,最大P2P效率为222.47%。该LNG-CB可以进一步优化,并有望将来建造实用的大规模储能系统。
免责声明 Navitas Semiconductor (Navitas) 保留随时自行修改本文所述产品和/或规格的权利。本文件中的所有信息,包括产品功能和性能的描述,如有更改,恕不另行通知。所述产品的性能规格和操作参数是在独立状态下确定的,不保证安装在客户产品中时的性能相同。本文所含信息不提供任何明示或暗示的陈述或保证。本文件仅作为指南提供,并不传达 Navitas 或任何第三方知识产权下的任何许可。Navitas 的产品不适用于涉及极端环境条件或生命支持系统的应用。条款和条件。Navitas、GaNFast、GaNSense、GeneSiC 和 Navitas 徽标是 Navitas Semiconductor 及其子公司的商标或注册商标。所有其他品牌、产品名称和标记都是或可能是用于识别其各自所有者的产品或服务的商标或注册商标。版权所有 ©2023 Navitas Semiconductor。保留所有权利。联系方式:info@navitassemi.com
电池存储构成了任何电动汽车(EV)中最重要的部分,因为它为EV.SO的运行提供了必要的能量,以提取电池的最大O/P,并确保其安全操作是有必要的有效的电池管理系统的存在。因此,BMS通过确保单元格在其安全的操作参数中运行,构成了用户和电池的任何EV和安全防护的组成部分。建议的系统仅监视电池并安全地为电池充电,并保护它以避免发生事故。所提出的模型具有以下功能电流,电压测量,火灾,保护,电池状态检测,液晶显示(LCD)等。电动汽车(EV)是由一个或多个电动机供电的汽车,它们从可充电电池中吸收能量,而不是仅依靠消耗化石燃料的内燃机(ICE)。电池管理系统(BMS)是电动汽车(EV)和其他电池动力系统的关键组件。它监视并控制电池组的操作,以确保其最佳性能,安全性和寿命。
摘要 本研究提出了一种新型的探空火箭设计域,该设计域更直观、更简单,更有利于单级探空火箭的研制过程。在各种操作参数中,本研究确定了几个有效变量,这些变量也是探空火箭设计过程中最实用的变量之一。在为峰值高度优化考虑的众多设计变量中,确定了可以说对塑造整个系统最有效、在探空火箭设计过程中最具实用性的三个变量。进行了一项基于模拟的研究,以确定:所选参数对飞行性能的影响,以及单级探空火箭在峰值高度方面的最佳设计条件。将模拟结果与随机选择的实验测试飞行数据进行比较并进行验证。由于性能曲线随变量而变化,因此考虑的设计输入的组合是有效的。所提出的新型设计领域和设计程序有望为目标高度优化的单级探空火箭的研制过程提供有益的参考和实际的利益。
Urban Air Mobility(UAM)是通过涉及各种相互关联系统的系统(SOS)实现的先进航空概念。基于模型的系统工程(MBSE)非常适合定义此类SOS的体系结构。但是,尽管UAM SOS有一些共同的基本特征,但特定的体系结构和操作参数将从一个都会区变成另一个都会区。在每个都会区的UAM体系结构和运营的适当模型可能会导致不一致,混乱,并最终导致操作困难。为了防止这种结果,本文提出了一个结构化框架,用于利用本体论和参考模型来阐述UAM体系结构。这些用于得出Metro-rarea-特定的架构和操作模型。本体论统一了对UAM SOS中系统,关系和过程的理解。以本体论为基础,基线档位的参考模型是地铁区特异性建筑模型的模板。组合有助于快速生成特定的UAM架构和用例,如本文所示。我们总结了为什么专门为UAM准备的完全模块化和可重复使用的框架这一步骤可以加速进步,以实现这一雄心勃勃的概念。
电子邮件:paredes.g@aluno.ifsp.edu.br摘要钻探浪费的适当管理,尤其是页岩振动器的残留固体中的流体含量,仍然是石油和天然气运营中的一项关键挑战。 依靠实验室分析的传统方法引入了重大延迟,从而阻碍了实时过程优化。 本研究提出了一个基于人工神经网络(ANN)的虚拟传感器,以实时预测振动筛选残留固体中的流体含量。 在不同的操作参数下,从工业页岩振动器系统中收集了实验数据,包括运动速度,进料流量和屏幕倾斜度。 使用TensorFlow开发了多层感知器模型,该模型具有输入归一化,辍学正则化和随机梯度下降的优化训练。 ANN体系结构达到的平均绝对误差为0.03,损失为0.002,证明了强大的收敛而不拟合。 通过t检验进行的统计验证证实,预测值和实验值之间没有显着差异(测试数据的p值为0.67,整个数据集为0.85)。 模型在稳定的操作条件下的准确性可以连续监视而无需其他硬件,从而解决了行业对延迟实验室的依赖电子邮件:paredes.g@aluno.ifsp.edu.br摘要钻探浪费的适当管理,尤其是页岩振动器的残留固体中的流体含量,仍然是石油和天然气运营中的一项关键挑战。依靠实验室分析的传统方法引入了重大延迟,从而阻碍了实时过程优化。本研究提出了一个基于人工神经网络(ANN)的虚拟传感器,以实时预测振动筛选残留固体中的流体含量。在不同的操作参数下,从工业页岩振动器系统中收集了实验数据,包括运动速度,进料流量和屏幕倾斜度。使用TensorFlow开发了多层感知器模型,该模型具有输入归一化,辍学正则化和随机梯度下降的优化训练。ANN体系结构达到的平均绝对误差为0.03,损失为0.002,证明了强大的收敛而不拟合。通过t检验进行的统计验证证实,预测值和实验值之间没有显着差异(测试数据的p值为0.67,整个数据集为0.85)。模型在稳定的操作条件下的准确性可以连续监视而无需其他硬件,从而解决了行业对延迟实验室的依赖
摘要:空气分级装置与其他用于分离材料的系统相比具有明显的优势。它们最大限度地提高了磨机的产能,因此构成了降低破碎和研磨操作能耗的有效方法。由于其性能的改进具有挑战性,因此开发一种有效的建模系统具有重要的实际意义。本文介绍了一种新颖的基于知识的散装材料分类 (FLClass) 系统。研究中考虑了广泛的操作参数:进料材料的平均质量和 Sauter 平均直径、分级机转子速度、工作气压和测试进行时间。输出变量是 Sauter 平均直径和分类产品的切割尺寸,以及工艺性能。该模型已根据实验数据成功验证。测量数据和预测数据之间的最大相对误差低于 9%。所提出的基于模糊逻辑的方法允许对要进行的过程进行优化研究。对于考虑的输入参数范围,分类过程的最高性能几乎等于 362 g/min。据我们所知,本文是公开文献中第一篇涉及模糊逻辑方法对散装材料空气分类过程进行建模的论文。