摘要。目前无人机记录的数据集大多局限于动作识别和物体跟踪,而手势信号数据集大多记录在室内空间。目前,尚无用于无人机指挥信号的室外记录公共视频数据集。利用无人机的视觉传感器和操作简单性,可以有效地将手势信号用于无人机。为了填补这一空白并促进更广泛应用领域的研究,我们提出了一个在室外环境中记录的无人机手势信号数据集。我们从一般飞机操纵和直升机操纵信号中选择了13个适合基本无人机导航和指挥的手势。我们提供了119个由37151帧组成的高清视频片段。使用基于姿势的卷积神经网络 (P-CNN) 计算得出的整体基线手势识别性能为 91.9%。所有帧都标注了身体关节和手势类别,以便将数据集的适用性扩展到更广泛的研究领域,包括手势识别、动作识别、人体姿势识别和情境感知。
• 氮气车的低压侧提供 0-400 PSI 受控压力的氮气源,以服务飞机轮胎或其他部件。• 氮气车的高压侧提供 0-5000 PSI 受控压力的氮气源,以服务飞机高压氮气系统和部件。• 在环境温度下,用 5,000 PSIG 纯度为 99.5% 或更高的氮气在不到 45 分钟的时间内将机载储存瓶充满。特点: • 自动 PLC 控制氮气生成和填充,操作员只需进行“开”和“关”操作即可,操作简单。 • 先进的自动和连续氮气纯度控制和校准,配有板载纯度分析仪 • 通过人机界面 (HMI) 触摸屏进行全面的操作和维护诊断,并附带故障日志和故障排除帮助。 • 与市场上的任何其他氮气发生器不同,HII 100% 无油进料和高压空气压缩机无需使用油分离器,从而延长了氮气分离膜的使用寿命,无需更换油过滤器和维护,从而降低了 HPSGNSC 的总体生命周期成本。 主要特点
体细胞胚胎发生(SE)是林木无性繁殖最有效的方法,也是遗传改良的基础。然而,一些瓶颈问题仍未得到解决,例如启动困难、增殖过程中胚胎发生潜能的维持、成熟效率低下以及胚胎发育异常率高。这些瓶颈涉及复杂的机制,包括转录调控网络、表观遗传修饰和生理条件。近年来,动物干细胞研究中使用的几种小分子对植物再生表现出积极作用,包括针叶树种,这为克服针叶树 SE 相关的挑战提供了一种潜在的新方法。在这篇综述中,我们总结了针叶树中使用的小分子,包括氧化还原物质、表观遗传调控抑制剂和其他代谢相关分子,它们无需使用基因工程即可克服这些困难。此外,该方法还具有动态可逆、操作简单、可同时调控多个靶标等优点,有望成为优化包括SE在内的植物再生体系的最佳选择之一。
VLT MICRO 特点 • 安装和操作简单。• 紧凑的整体尺寸节省空间和安装成本。• 所有型号均通过 UL 和 C-UL 认证。• 所有型号均封装在受保护的底盘外壳 (IP 20) 中 • 非常适合面板安装。• 提供可选的 DIN 导轨安装。• 提供可选的远程键盘安装套件。• 轻松访问所有终端连接。• 可编程数字输入和输出 • 低噪音运行。• 载波频率可调至 18 kHz,运行安静。载波频率高达 16 kHz 时,可提供完全连续输出。• 可编程 V/Hz,可在可变扭矩负载下实现最佳运行。• 过载电流 — 1 分钟内为额定电流的 150%。• 自动电压调节根据负载改变输出电压。重载时始终提供全电压,但在轻载时电压会降低,以实现最高效率和最低运行温度。• S 曲线或线性加速和减速斜坡曲线。• 三个步进频率。• 可编程偏移和增益,可轻松适应非标准速度参考信号。• 瞬时断电后自动与电机同步。• 参数锁定可防止未经授权的更改。• 可编程直流制动。• 故障历史记录。• 本地速度操作可以通过控制面板上的电位器或“UP”“DOWN”键进行。
背景:桉树(Melaleuca leucadendra)因其生物活性萜类化合物(包括 1,8-桉油素)而具有抗菌潜力。这种化合物能够抑制大肠杆菌的生长,大肠杆菌是一种导致多种传染病的细菌。利用发酵的生态酶法操作简单,不需要复杂的材料。目的:本研究旨在评估桉树生态酶对大肠杆菌的抗菌活性。材料与方法:本研究中使用的 M. leucadendra 来自印度尼西亚拉蒙岸的 Candisari 村,大肠杆菌来自实验室分离株。通过观察 Muller-Hinton 琼脂上的孔扩散试验中的抑菌圈来测量抗菌活性,以氯霉素为阳性对照,蒸馏水为阴性对照。培养期为24小时,温度为36°C。结果:阳性对照周围的抑菌圈为25.94±1.1mm。在10%至100%浓度范围内,阴性对照和桉树环保酶溶液周围均未观察到抑菌圈(0mm)。但环保酶周围观察到一个更清晰的抑菌圈。环保酶无法抑制大肠杆菌的生长可能与多种因素有关,包括成分、加工方法、酸度和细菌抗性。结论:桉树环保酶在任何测试浓度下对大肠杆菌均未表现出足够的抗菌活性。
蔬菜作物因其在平衡人类饮食中发挥的潜在作用而被称为保护性食物,尤其是对于素食者来说,因为它们是维生素和矿物质以及膳食纤维的丰富来源。许多生物和非生物胁迫威胁着这些作物的生长、产量和品质。这些作物的育种行为为一年生、二年生和多年生。传统的育种策略在改良经济作物性状方面面临许多挑战。在大多数情况下,将有用性状渗入种质需要大量的回交和严格的选择压力,这是一个耗时耗力的过程。植物科学家通过使用被称为成簇的规律间隔的短回文重复序列 (CRISPR)-CRISPR 相关蛋白-9 (Cas9) 的革命性育种方法,更精确、更准确地改良了作物的产量、品质、生物胁迫抗性、非生物胁迫耐受性等经济性状并提高了营养品质。该技术具有突变效率高、脱靶后果少和操作简单等特点,因此可以通过基因定向突变获得新的种质资源。即使在使用传统方法难以培育的复杂基因组中,它也有助于诱变反应。随着全基因组测序的发展,重要基因功能的揭示促进了 CRISPR-Cas9 编辑对所需靶基因进行突变。该技术加快了具有更好农业经济性状的新种质资源的创造。本综述详细描述了 CRISPR-Cas9 基因编辑技术及其在蔬菜栽培中的潜在应用、面临的挑战和未来前景。
在过去的几十年里,斑马鱼因其发育快、基因操作简单、成像简单、与人类共享保守的疾病相关基因和途径等优势,成为一种越来越受欢迎的疾病模型。与此同时,疾病机制的研究越来越多地关注非编码突变,这需要增强子和启动子等调控元件的基因组注释图。与此同时,斑马鱼研究的基因组资源正在扩大,产生了各种基因组数据,有助于定义调控元件及其在斑马鱼和人类之间的保守性。在这里,我们讨论了生成斑马鱼基因组调控元件功能注释图的最新进展,以及如何将其应用于人类疾病。我们重点介绍了社区驱动的发展,例如 DANIO-CODE,以生成斑马鱼基因组数据和功能注释的集中和标准化目录;考虑当前注释图谱的优势和局限性;并提供解释和整合现有图谱与比较基因组学工具的考虑因素。我们还讨论了开发标准化基因组学协议和生物信息学流程的必要性,并为开发分析和可视化工具提供建议,这些工具将整合各种多组学批量测序数据以及快速扩展的单细胞方法数据,例如使用测序对转座酶可及染色质进行单细胞测定。此类整合工具对于利用批量基因组学提供的多组学染色质表征以及新兴单细胞方法提供的细胞类型分辨率至关重要。总之,这些进展将构建一个广泛的工具包,用于探究斑马鱼的人类疾病机制。
CIS 展示是一种基于重组 DNA 的技术,无需克隆即可将表达的肽或蛋白质库与其自身的 DNA 序列连接起来。细菌复制起始蛋白 RepA 的活性是该技术的核心。该蛋白质是一种大肠杆菌质粒复制起始蛋白,具有独特的特性,即专门与其来源的相同 DNA 模板结合——“顺式活性”。CIS 展示提炼了这种天然系统的基本成分,因此 RepA 及其遗传控制元件被携带在短线性 DNA 序列上,该序列可以通过聚合酶链式反应 (PCR) 轻松生成。这些控制元件是 CIS 元件和 ori 区域,它们终止转录复合物,因此可以将新生表达的 RepA 蛋白加载到其自身模板的 ori 区域上。通过编码与 RepA 融合的肽或蛋白质库,表达的库肽附着在其编码 DNA 上(图 1)。随后可以对 DNA 代码进行测序以显示肽序列 (1)。 CIS 展示是一种重组程序,需要细菌转录和翻译机制的组件才能运行;然而,该过程可以在细胞外进行,而噬菌体展示等其他技术则需要在细菌内部复制(1-2)。因此,CIS 展示可以以纯无细胞的方式使用细菌细胞裂解物,从而克服了其他技术需要将 DNA 转移到细胞中的局限性,而转移是一种低效的过程,并且限制了文库的大小。实际上,这意味着 CIS 展示操作简单,可以快速生成和筛选更大的文库,从而缩短从文库设计到命中识别的时间。几天内就可以生成超过 10 13 个与其自身代码相关的不同肽的文库,并在几周内进行筛选。与 RepA 融合的肽专门且有效地与其自身的 DNA 连接:在使用肽标签的测试中,超过 40%
西里西亚理工大学,机械工程学院,工程与生物医学材料研究所,材料加工技术和材料科学计算机技术系电子邮件:marzena.prokopiuk@polsl.pl,leszek.dobrzanski@polsl.pl,aleksandra.drygala@polsl.pl,anna.tomiczek@polsl.pl 摘要:硅是并且将继续是光伏电池生产中使用的基本元素。硅电池占光伏产业80%以上,光伏产业是近年来增长最快的产业之一,其增长动力堪比微电子产业初期的发展。硅光伏电池的基本元件是pn结,它是通过在掺杂气氛中对p型硅进行退火而获得的。为了减少表面复合造成的损失,需要进行钝化处理,可以通过氧化Si表面或沉积SiO 2 层来实现。摘要:硅现在是、现在仍然是光伏电池生产中必不可少的元素。硅电池占光伏产业80%以上,光伏产业是近年来增长最快的产业之一,其增长力度堪比微电子产业繁荣初期的发展。硅太阳能电池的基本元件是pn结,它是通过在掺杂的气氛中加热p型硅获得的。为了减少表面复合造成的损失,通过氧化Si表面或沉积SiO2层来钝化硅表面。关键词:硅光伏电池,pn 结,钝化层 1.引言 臭氧空洞、温室效应和酸雨是现代世界最严重的生态问题,威胁着健康和生命。其原因包括:大量燃烧煤和石油等化石燃料。解决这些问题的关键是可再生能源技术的发展。人们对利用太阳辐射能发电非常感兴趣。由于运行成本低且操作简单,光伏装置非常适合为住宅和商业设施提供能源。
摘要:近年来,由于清洁、绿色和可持续的电动汽车的出现,人们对电池电动汽车 (BEV) 和燃料电池电动汽车 (FCEV) 的需求巨大,它们可以替代传统的燃料驱动汽车。与 BEV 相比,FCEV 具有几个优势,例如成本更低、效率更高、操作简单,最重要的是能量密度更高。质子交换膜燃料电池 (PEMFC) 是 FCEV 中首选的燃料电池类型。过去几年,由于可再生能源水电解槽的诸多发展,绿色氢气产量大幅增加,低温质子交换膜燃料电池的需求量更大。燃料电池组件成本高(双极板、电催化剂和膜)、耐用性差、功率密度低,FCEV 的全球商业化仍然受到阻碍。幸运的是,由于纳米材料开发(非 PGM 电催化剂和非 Nafion 基膜)的重大进展,组件成本正在下降。尽管有这些发展,但在 PEMFC 的工作环境下,材料(膜、电催化剂和双极板)的降解是非常常见和自然的。质子交换膜 (PEM) 是 PEMFC 的核心组件之一,在分离两个电极(即阳极和阴极)、仅允许质子通过和限制燃料交叉方面起着关键作用。不幸的是,PEM 很容易降解,导致燃料交叉、不良反应和混合电位,从而降低 PEMFC 的功率和能量密度,导致行驶里程差和效率降低。膜变薄、针孔形成、聚合物主链分离和过氧化物自由基攻击是导致膜降解和影响 PEMFC 性能的一些因素。因此,对于目前提出的工作,我们的主要目标是确定 PEMFC 下原位和异位条件下的膜降解及其缓解方法。我们提出的工作的最终目标是实现用于电力应用的低温 PEMFC 的稳定且高质子导电膜。