本文介绍了一种倾转旋翼飞行模拟平台,用于实时模拟 Bell XV-15 飞机,供教学和研究之用。倾转旋翼飞机的数学模型在 MATLAB/Simulink © 中实现,包括飞机动力学、执行器、传感器和飞行控制计算机的简化模型。实现的倾转旋翼数学模型与飞行控制硬件(即飞行操纵杆和方向舵踏板)相连,飞行员使用这些硬件来设置输入命令。相反,图形环境由 FlightGear 提供,FlightGear 是一种广泛用于研究活动的开源跨平台软件。本文的另一个贡献是设计和实施了稳定性控制和增强系统,以增强飞机稳定性并改善操纵品质。开发的模拟器通过多次模拟进行测试,验证了开发的数学模型和稳定性控制和增强系统的有效性。结果是一个可在商用笔记本电脑上执行的倾转旋翼飞行模拟平台,具有实时性能,可用于研究和教学活动。
摘要 NASA 正在对先进空中机动 (AAM) 飞机和操作进行研究。AAM 任务的特点是航程低于 300 海里,包括乡村和城市操作、载客和货运。城市空中机动 (UAM) 是 AAM 的一个子集,是预计具有最大经济效益且最难开发的部分。NASA 革命性垂直升力技术项目正在开发 UAM VTOL 飞机设计,可用于集中和指导研究活动,以支持新兴航空市场的飞机开发。这些 NASA 概念飞行器涵盖了相关的 UAM 功能和技术,包括推进架构、高效而安静的转子以及飞机空气动力学性能和相互作用。所采用的配置是通用的,在外观和设计细节上有意与知名的行业安排不同。这些 UAM 概念飞机已经用于许多工程研究,包括满足安全要求、实现良好的操纵品质以及将噪音降低到直升机认证水平以下的工作。以概念车为重点,对先进空中机动飞机的工程进行了观察。
确定飞行包线极限所需的测试,该极限是风速和风向的函数。舰载飞行操作必须应对海洋环境特有的挑战,例如船舶运动和船舶上层建筑产生的尾流湍流。船舶尾流影响飞机性能和操纵品质特征,进而影响飞行员的工作量。船舶尾流特征因船舶而异,甚至同一艘船的不同相对风角也不同。在模拟环境中评估船舶尾流严重程度的能力使得在设计过程中解决与尾流相关的设计考虑因素,例如船舶几何布局和飞机飞行控制设计。NAVAIR 开发了一种桌面尾流分析工具,用于模拟飞机在受到计算流体力学 (CFD) 创建的精确船舶尾流速度时操纵特性。该工具已应用于多种船舶配置,以评估尾流对旋翼和固定翼飞机的影响。这项工作描述了构成尾流评估工具的实时飞机飞行动力学模型和 CFD 尾流模型,总结了验证和确认工作,并描述了用于评估船舶尾流严重程度的比较过程(针对示例船舶配置)。
控制结构尺寸是翼身融合设计的主要挑战。这种飞机配置通常具有位于机翼后缘的冗余升降副翼,同时作用于俯仰轴和滚转轴。因此,适当的尺寸需要考虑纵向和横向的耦合标准。此外,由于较大的控制面面积而产生的显著铰链力矩,加上为了安全控制纵向不稳定性而产生的高偏转率,可能会导致过多的功耗和执行器质量损失。因此,在初步设计阶段,非常希望最小化控制面面积,同时确保足够的闭环操纵品质,并限制偏转和偏转率。这里解决了不稳定翼身融合飞机的控制面尺寸和飞行控制律的集成设计问题。使用最新的结构化控制器 H ∞ 非光滑优化工具,在单个步骤中优化纵向和横向控制律以及控制分配模块的增益,同时最小化控制面跨度。确保以下约束:1) 飞行员纵向拉起、2) 飞行员倾斜角度顺序和 3) 纵向湍流的最大偏转角和偏转率。使用这种耦合方法,与初始布局相比,外副翼跨度显著增加,而闭环操纵质量
6.1 简介 6-1 6.1.1 关键假设 6-1 6.1.2 设计安全性 6-1 6.1.2.1 一般要求 6-1 6.1.2.2 耐撞性 6-2 6.1.2.3 可靠性 6-2 6.1.2.4 飞机性能能力 6-2 6.1.2.5 环境/天气安全设计特性 6-2 6.1.2.6 操纵品质和飞行控制法则 6-2 6.1.2.7 直觉和决策 6-2 6.1.3 导航设计能力 6-3 6.1.3.1 技术现状 – 全球定位系统 (GPS) 6-3 6.1.3.2 嵌入式 GPS 和混合惯性导航系统 (INS) 系统 6-3 (简称为 EGI) 6.1.4无人机在敌对/高威胁区域的生存能力 6-3 6.1.5 完全自主、遥控飞行器(RPV)、人在回路 6-4 (HITL)系统和传感器 6.1.5.1 视觉传感器 6-4 6.1.5.2 无人战车后送系统的空域协调和融入战场和国家空域 6-4 6.1.6 概念的社会化 6-5 6.1.6.1 放弃角色 6-5 6.1.6.2 更换医疗后送飞行员 6-5 6.1.6.3 无人战车后送概念的演变 6-5 6.1.6.4 应急任务(最坏情况) 6-6 6.1.6.5 常规任务支援 6-6 6.1.7 技术安全驾驶标准无人战车救援技术概述 6-6 6.1.7.1 需要考虑的安全参数 6-7 6.1.8 当前和未来的技术 6-8
飞机结构设计是一个复杂的工业过程,需要对空气动力学、结构、材料和系统等不同领域进行多学科分析和考虑,并在这些不同领域施加的约束之间进行适当的折衷,以满足飞机所需的整体性能。在公务机和军用飞机领域,鉴于对更高效的空气动力学公式的研究、对“尽可能轻”设计的不断渴望以及机身尺寸的增加,飞机的灵活性在过去几十年中大大提高。这就需要考虑从飞机开发的最初阶段开始就存在于飞行包线中的越来越复杂的气动弹性耦合现象。挑战远远超出了航空结构性能领域,因为气动弹性也会对相关领域产生重大影响,例如飞机性能、操纵品质或系统设计。这仅仅强调了气动弹性对新飞机项目的风险、成本和期限的潜在重大影响:气动弹性现在被视为设计的主要学科之一,也是飞机开发逻辑中的“关键”过程之一。这种极具挑战性的背景是自 20 世纪 90 年代以来达索航空在气动弹性领域不断进行重大修改的源头。今天,这种趋势仍在继续,气动弹性将不得不应对一系列全新的挑战和需求,并继续以同样的速度自我改造,以避免阻碍创新和未来的技术突破。从这个角度来看,本文概述了达索航空在军用飞机和公务机领域在气动弹性方面当前的最佳工业实践。涵盖了这个充满挑战和令人兴奋的领域的主要方面:数值方法和工具、实验验证过程、飞机计划期望以及与人类组织相关的方面。它讨论了原则和指导方针,而不是有关基本方程和方法的细节。最后一部分介绍了达索航空在气动弹性领域未来的工业挑战。
在电传操纵飞机上,飞行控制是根据复杂的控制法则和逻辑实施的。通常在传统飞机上进行的操纵品质认证测试,以证明符合 CS 25 SUBPART B – FLIGHT,但这些测试不足以涵盖在服务中可能遇到的所有可预见情况下的飞行控制法则行为。为了标准化操纵品质测试,EASA 认为,需要在认证文件中明确提出和正式化符合 CS 25.143、25.1301 和 25.1309 中关于飞行控制法则特性的方法,以确保并记录对控制法则、逻辑和特性的充分覆盖和测试。因此,您可能需要请求解释性材料来提高合规性演示的正式化水平。关于失衡特性,数字飞行控制系统不允许飞机处于 CS 25.255(a) 所要求的失衡状态,因此无法证明直接合规性。但是,CS.25.255 的其他要求仍然适用。EASA 可能要求申请人详细说明如何遵守所有适用的 CS 25.255 要求,并提供 DFCS 设计和操作的详细说明,以支持预期的合规性证明。申请人还应详细说明在正常和超速区域进行任何飞行测试的提案。定义配备电子飞行控制系统的飞机的(俯仰、偏航、滚转)设计机动要求,其中控制面的运动与驾驶舱控制装置的运动没有直接关系。这可能基于 CS-25 Am 中采用的相关监管材料。13.存在与带有电子飞行控制/电传操纵系统的飞机相关的认证问题。该主题还涵盖飞行员控制(例如侧杆控制器、方向舵踏板)和操作测试合规性、电子飞行控制系统故障、控制信号完整性、控制面位置感知、控制权限限制、共模故障和错误考虑、飞行控制法则验证和模式通告。可能需要 CRI(包括特殊条件)。
摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力减少量分别为115Kg(1.9%)和0.58阻力数(8.4%)。
摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力降低分别为 115 公斤 (1.9%) 和 0.58 阻力数 (8.4%)。