动机:预测可靠的药物-靶标相互作用 (DTI) 是计算机辅助药物设计和再利用中的一项关键任务。在这里,我们提出了一种基于数据融合的 DTI 预测新方法,该方法建立在 NXTfusion 库之上,通过将矩阵分解范式扩展到实体关系图上的非线性推理来推广它。结果:我们在五个数据集上对我们的方法进行了基准测试,并将我们的模型与最先进的方法进行了比较。我们的模型优于大多数现有方法,同时保留了预测 DTI 作为二元分类和实值药物-靶标亲和力回归的灵活性,可与为每个任务明确构建的模型相媲美。此外,我们的研究结果表明,DTI 方法的验证应该比之前一些研究中提出的更严格,更多地侧重于模拟真实的 DTI 设置,其中需要预测以前未见过的药物、蛋白质和药物-蛋白质对。这些设置正是将异构信息与我们的实体-关系数据融合方法集成的好处最明显的环境。
大脑计算机界面是人类计算机交互的一种新方法,它提供了大脑与计算机或其他外部设备之间的直接通信联系(McFarland和Wolpaw,2011年)。事件相关电位(ERP)是代表皮质加工的独特相位的大脑表面的电活动的时间固定量度(Patel和Azzam,2005),它是与某人对某些刺激或特定事件的反应有关的内源性电位。ERP的典型示例是N200和P300。P300(Sutton等人,1967年)是一个正面峰值事件后约300毫秒显示的正峰波形,是ERP研究最多,使用最广泛,最突出的成分之一(David etal。,2020年; Kirasirova等。,2020)。P300分类检测是P300-BCI研究的重点,快速准确的识别对于改善p300-BCI的性能至关重要(Huang等人。,2022)。P300通常表现出低信噪比(SNR)(Zhang等人,2022)。为了突出其时间锁定的组件并最大程度地减少背景噪声,P300-BCI要求从多个试验中收集,汇总和平均数据以获得可靠的输出(Liu等人。,2018年),这是耗时且有效的。因此,在单审判中正确对p300进行分类是一个巨大的挑战。到目前为止,单个试验P300分类算法的准确性记录如下:Krusienski使用逐步线性判别分析(SWLDA)的平均分类精度约为35%。使用贝叶斯线性判别分析(BLDA)的平均分类准确性(BLDA)约为60%。Blankertz应用了收缩线性判别分析(SKLDA),并达到平均分类精度约为70%。张张通过时空判别分析(STDA),并达到平均分类准确性约为61%。Kaper开发的支持向量机(SVM)算法的平均分类精度达到64.56%。以及XIAO提出的判别规范模式匹配(DCPM)的价值为71.23%,表明DCPM在单验P300分类中的其他传统方法显着超过了其他较小的训练样本中的其他传统方法(Xu等人。,2018,2021; Xiao等。,2019a,b,2021; Wang等。,2020)。ma等。(2021)提出了一个基于胶囊网络的模型,该模型提高了单审P300的检测准确性,但是,由于大小的增加,计算变得复杂。Zhang等。 (2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。 这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人 ,2022)。 深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。 ,2020年),脑电图数据融合(Panwar等人Zhang等。(2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人,2022)。深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。,2020年),脑电图数据融合(Panwar等人如今,深度学习方法在基于脑电图的目标检测技术方面取得了巨大进展(Li等人,2021),基于此,一些学者提出了其他用于P300分类的方法,例如转移学习(Wei等人。,2020),incep a-eegnet(Xu等人,2022),组合分类器(Yu等人。,2021),主成分分析(PCA)(Li等人,2020)等目前,Daniela使用了CNN(Cecotti和
摘要:特质焦虑涉及体验和报告负面情绪和思想的稳定倾向,例如在不同情况下恐惧和担忧,以及对环境的稳定看法,其特征是威胁性刺激。先前的研究试图研究与焦虑相关的神经解剖学特征,主要是使用单变量分析,从而导致对比结果。这项研究的目的是通过利用联合数据融合机学习方法来构建脑形态特征中特质焦虑中个体差异的预测模型,以允许对新病例的概括。此外,我们旨在进行网络分析,以测试与焦虑相关网络在调节其他与焦虑无关的其他网络中具有核心作用的假设。最后,我们想检验以下假设:特质焦虑与特定的认知情绪调节策略有关,以及焦虑是否随着衰老而减少。使用数据融合无监督的机器学习方法(Parallel ICA)的158名参与者的结构性大脑图像第一次分解为独立的灰色和白质网络。然后,使用监督的机器学习(决策树)和向后回归来提取和测试特质焦虑的预测模型的普遍性。两个协调的灰色和白质独立网络成功地预测了特质焦虑。我们还发现,性状焦虑与灾难性,反思,其他和自称的焦虑呈正相关,并且与重新聚焦和重新评估的积极重新关联和负相关。第一个网络主要包括顶叶和时间区域,例如中心后,前后和中部和上颞回,而第二个网络包括额叶和顶叶区域,例如上颞回和中间回,前缘和前扣带和前胎。此外,特质焦虑与年龄负相关。本文提供了有关预测大脑和心理特征性状焦虑焦虑中个体差异的新见解,并可以为将来的诊断预测焦虑症铺平道路。
摘要 — 人机交互已经存在了几十年,每天都有新的应用出现。尚待实现的主要目标之一是设计一种类似于人与人之间交互的交互。因此,需要开发能够复制更真实、更轻松的人机交互的交互系统。另一方面,开发人员和研究人员需要了解用于实现这一目标的尖端技术。这些系统可以与人工智能相结合,以做出准确的行动或决策。运动跟踪器、虚拟现实耳机等系统都利用人工智能来减少误差幅度,并从设备中获得最佳输出。拥有一个不仅能够接受用户输入而且能够理解这些数据的系统将人机交互提升到一个新的水平。我们提出这项调查是为了向研究人员提供使用多种输入实现的最先进的数据融合技术,以完成工业 4.0 应用中使用的机器人应用领域的任务。此外,输入数据模式大致分为单模态和多模态系统,它们应用于包括医疗保健行业在内的众多行业,有助于医疗行业的未来发展。它将帮助专业人员使用不同的模式检查患者。多模态系统通过所使用的输入组合来区分
传感器融合是自动驾驶汽车中感知问题的重要解决方案之一,其中主要目的是增强对系统的感知而不会失去实时性能。因此,这是一个权衡问题,通常观察到大多数具有高环境感知的模型无法实时执行。我们的文章与相机和激光雷达数据融合有关,以实现自动驾驶汽车的更好环境感知,考虑到3个主要类别是汽车,骑自行车的人和行人。我们从3D检测器模型中融合了输出,该模型从LiDar中获取了其输入以及从相机中获取其输入的2D检测器的输出,以比单独分别提供更好的感知输出,以确保其能够实时工作。我们使用3D检测器模型(复杂的Yolov3)和2D检测器模型(YOLO-V3)解决了问题,其中我们应用了基于图像的融合方法,该方法可以在本文中详细讨论了LIDAR和摄像机信息之间的融合和相机信息之间的融合。我们使用平均平均精度(MAP)度量,以评估我们的对象检测模型并将所提出的方法与它们进行比较。最后,我们在Kitti数据集以及我们的真实硬件设置上展示了结果,该设置由LIDAR Velodyne 16和Leopard USB摄像机组成。我们使用Python开发了我们的算法,然后在Kitti数据集上验证了它。我们将ROS2与C ++一起使用,以验证从硬件配置获得的数据集上的算法,证明我们提出的方法可以以实时的方式在实际情况下有效地提供良好的结果并有效地工作。
本论文由 Aggie 数字收藏和奖学金的电子论文和学位论文免费提供给您,供您开放访问。它已被 Aggie 数字收藏和奖学金的授权管理员接受并纳入论文中。有关更多信息,请联系 iyanna@ncat.edu。
摘要 深度学习在成像和基因组学中的引入显著推动了生物医学数据的分析。对于癌症等复杂疾病,不同的数据模式可能揭示不同的疾病特征,而将成像与基因组数据相结合,有可能比单独使用这些数据源时揭示更多信息。在这里,我们提出了一个深度学习框架,通过将组织病理学图像与基因表达谱相结合,可以预测脑肿瘤的预后。使用两个独立的队列(783 个成人脑肿瘤和 305 个儿童脑肿瘤),开发的多模态数据模型与单一数据模型相比获得了更好的预测结果,同时也识别出了更相关的生物学途径。重要的是,当在第三个独立的脑肿瘤数据集上测试我们的成人模型时,我们表明我们的多模态框架能够泛化并在来自不同队列的新数据上表现更好。此外,利用迁移学习的概念,我们展示了如何使用针对儿童胶质瘤进行预训练的多模态模型来预测两种更罕见(样本较少)的儿童脑肿瘤(即室管膜瘤和髓母细胞瘤)的预后。总而言之,我们的研究表明,可以成功实施和定制多模态数据融合方法,以模拟成人和儿童脑肿瘤的临床结果。
使用这两种类型的传感器可利用雷达测量来提供物体的精确径向速度和距离,而望远镜可提供更好的天空坐标测量。通过安装雷达和光学传感器,PASO 可以延长对空间碎片的观察时间,并实时关联光学和雷达来源的信息。在黄昏时期,两种传感器可同时使用,快速计算 LEO 物体的新 TLE,从而消除大型 SST 网络中站点之间数据交换所涉及的时间延迟。这一概念不会取代对全球多个位置的传感器的 SST 网络的需求,但将提供一组更完整的给定物体通道测量值,从而增加初始轨道确定或给定位置再入活动监测的附加值。PASO 将有助于开发新的解决方案,以更好地表征物体,提高整体 SST 能力,并为开发和测试用于空间碎片监测的新雷达和光学数据融合算法和技术提供完美的场地。
04:00,第 1 装甲旅战斗队 (ABCT) 命令旅工兵营 (BEB) 的多用途桥梁连 (MRBC) 在河上架起两个 107 米的桥梁,以便师团渡河。MRBC 立即遭到敌方第 20 综合火力司令部 (IFC) 的 9A52 和 2S19 的间接火力攻击,造成重大伤亡并摧毁了桥梁资产。此外,保护 WGX 附近敌方防御的 2S6M ADA 系统摧毁了支援 1 ABCT 的六架 AH-64 阿帕奇直升机。从战术指挥所 (TAC) 控制战斗的陆军机动副司令 (DCG-M) 命令 1 ABCT 停止渡河行动并建立快速防御,同时师团试图摧毁影响 WGX 的敌方 ADA 和火炮。 DCG-M 查看了 G-2 和 G-3 的最新消息。他问道,为什么 1 ABCT 和 CAB 在敌方炮火和 ADA 的攻击下伤亡如此惨重,而参谋人员却表示所有 9A52 和 2S6M 支援 WGX 附近的防御都被摧毁了。