o Actemra ® (托珠单抗皮下注射剂 – 基因泰克/罗氏) o Tyenne ® (托珠单抗-aazg 皮下注射剂 – Fresenius Kabi) • Kevzara ® (sarilumab 皮下注射剂 – Regeneron) 白介素 17 阻滞剂 • Bimzelx ® (bimekizumab 皮下注射剂 – UCB) • Cosentyx ® (苏金单抗皮下注射剂 – 诺华) • Siliq ®(brodalumab 皮下注射剂 – Valeant) • Taltz ®(ixekizumab 皮下注射剂 – Eli Lilly) Interleukin-23 阻滞剂 • Ilumya ®(tildrakizumab-asmn 皮下注射剂 – Sun/Merck) • Omvoh ®(mirakizumab-mrkz 皮下注射剂 – Eli Lilly) • Skyrizi ® (risankizumab-rzaa 皮下注射剂 – AbbVie)• Tremfya ®(guselkumab 皮下注射剂 – Janssen/Johnson & Johnson)白介素 12/23 阻滞剂• Stelara ®(ustekinumab 皮下注射剂 – Janssen Biotech/Johnson & Johnson)白介素-1 阻滞剂• Kineret ®(anakinra 皮下注射剂 – Swedish Orphan Biovitrim)T 细胞共刺激调节剂• Orencia ®(abatacept 皮下注射剂 − Bristol Myers Squibb)整合素受体拮抗剂• Entyvio ®(vedolizumab 皮下注射剂 – Takeda)Janus 激酶抑制剂• Olumiant ®(baricitinib 片剂 – Eli Lilly)• Rinvoq ®(upadacitinib 缓释片剂 – AbbVie)• Rinvoq ® LQ(乌帕替尼口服溶液 - AbbVie)• Xeljanz ®(托法替尼片,托法替尼口服溶液 - 辉瑞)• Xeljanz ® XR(托法替尼缓释片 - 辉瑞)4 型磷酸二酯酶抑制剂• Otezla ®(阿普斯特片 - 安进)鞘氨醇 1-磷酸受体调节剂• Velsipity ™(依曲莫德片 - 辉瑞)• Zeposia ®(奥扎尼莫德胶囊 - 新基)酪氨酸激酶 2 抑制剂• Sotyktu ™(德克拉伐替尼片 - 百时美施贵宝)
墨尔本(澳大利亚)和印第安纳波利斯(美国) - 2025年1月13日。Telix Pharmaceuticals Limited (ASX: TLX, Nasdaq: TLX, Telix, the Company) today announces it has entered into an asset purchase agreement with antibody engineering company ImaginAb, Inc. (ImaginAb) to acquire a pipeline of next-generation therapeutic candidates, proprietary novel biologics technology platform, and a protein engineering and discovery research facility to enhance existing innovation功能。此交易增加了针对包括DLL3 1和整合素αVβ62的高价值靶标的早期药物候选物的管道,以及发现阶段的其他几个新靶标。这些下一代候选药物与Telix的Therapeutics管道协同拟合,从而扩展到未满足临床需求的未来治疗区域。获得的知识产权利用了小型工程抗体格式,这些抗体格式可以实现高度特异性的癌症靶向,并结合了快速肿瘤的吸收和血液清除。这项技术有可能对具有广泛的放射性同位素的成像和治疗肿瘤具有高效,并且具有特别感兴趣的α发射器。该交易还包括加利福尼亚州的最先进的研究机构,由一个有才华的发现,蛋白质工程和放射性药物开发专家组成。一起,这些资产将为Telix提供抗体工程和临床前开发的进一步内部功能,以及一个新型的生物制剂平台,以创建下一代Telix Precision Medicine和Therapeutic产品,超出了当前的临床阶段管道。Telix Therapeutics首席执行官Richard Valeix说:“专有药物发现平台的结合,有前途的Theranostic资产的管道以及有才华的主题专家团队将增强Telix的研究和创新能力,现在和未来。这次收购将使Telix能够通过最先进的放射治疗技术探索新的疾病领域。”
背景:肿瘤学中两种有前景的治疗策略是嵌合抗原受体-T 细胞 (CAR-T) 疗法和抗体药物偶联物 (ADC)。为了有效和安全,这些免疫疗法需要表面抗原在肿瘤中充分表达,而在正常组织中表达较少或不表达。为了确定专门针对乳腺癌 (BC) 分子和病理亚型的 ADC 和 CAR-T 的新靶点,我们基于多个公开可用的数据集提出了一种新颖的计算机模拟策略,并全面解释了进一步实施的工作流程。方法:我们对 Cancer Genome Atlas BC RNA 测序数据进行了差异基因表达分析,以识别 BC 亚型特异性上调基因。为了充分解释所提出的靶点发现方法,作为概念验证,我们为每种亚型选择了 200 个上调最多的基因,并通过几个公开的数据库对它们在 BC 和正常组织中的蛋白质表达进行了全面分析,以确定可能最安全和可行的靶点。结果:我们确定了 36 种潜在适用且亚型特异性的肿瘤表面抗原 (TSA),包括成纤维细胞生长因子受体 4 (FGFR4)、癌胚抗原相关细胞粘附分子 6 (CEACAM6)、GDNF 家族受体 α 1 (GFRA1)、整合素 β-6 (ITGB6) 和外核苷酸焦磷酸酶/磷酸二酯酶 1 (ENPP1)。我们还确定了 63 对可能适合共同靶向策略的潜在 TSA 对。最后,我们在一组患者、多种 BC 细胞系和 METABRIC 数据库中验证了亚型特异性。结论:总体而言,我们的计算机模拟分析提供了一个框架,用于识别新的 CAR-T 和 BC 抗体疗法的开发所需的新型和特异性 TSA。关键词:差异基因表达、乳腺癌、内在亚型、CAR-T、抗体 e 药物偶联物、肿瘤表面抗原
细胞迁移和激活(5)。除了“经典”趋化受体外,趋化因子还会与非典型趋化因子受体 (ACKR) 结合,这是一类无法激活 G 蛋白或诱导趋化性的受体。这类受体可以通过趋化因子清除、趋化因子转胞吞和形成趋化梯度来调节局部炎症和免疫反应 (5)。C – C 基序趋化因子受体样 2 (CCRL2) 是一种与 CC 趋化因子受体密切相关的分子,与 ACKR 类似,它缺乏通过 G 蛋白发出信号的能力。然而,与 ACKR 不同的是,CCRL2 结合非趋化因子趋化蛋白趋化素,并且不会激活 b -arrestin 依赖性信号传导 (6 – 8)。因此,CCRL2 不会经历高速率内化或促进从细胞外液中清除配体 (6, 9),而是作为一种分子发挥作用,将配体固定并可能集中在表达 CCRL2 的细胞(如内皮细胞)表面 (10, 11)。该过程有助于促进表达 CMKLR1(最近更名为趋化因子 1;参考文献 12),即信号趋化因子受体的循环白细胞的 b 1 整合素依赖性停滞和粘附 (11),例如在单核细胞、树突状细胞 (DC) 和自然杀伤 (NK) 细胞 (13, 14) 的情况下。肺内皮细胞构成一层薄屏障,具有在空气和血液之间进行气体交换的专门功能,位于白细胞外渗的部位。最近,单细胞转录组分析揭示了小鼠和肺内皮细胞的异质性 (15, 16)。我们之前曾报道,CCRL2 的表达在遗传和化学诱导的肺癌实验模型中保护小鼠。这一作用基于 CCRL2 在 NK 细胞向肺募集和抗肿瘤免疫监视协调中的非冗余作用 (17)。在这里,我们报告 CCRL2 在 NK 细胞协调抗肿瘤反应中的作用是肺的一个特殊特性。通过结合遗传和转录方法以及整合单细胞 RNA 测序 (scRNA-seq)
摘要背景:不同的自身免疫和炎症疾病 (AID) 之间在很大程度上共享致病性炎症途径。这为开发针对几种 AID 的特定靶向疗法提供了潜力。方法:我们分析了两个临床试验注册中心 (ClinicalTrials.gov 和 EU 临床试验注册中心),以通过深入的再利用分析确定至少两种最常见的 AID [类风湿性关节炎 (RA)、脊柱关节炎 (SpA)、皮肤银屑病 (cPso)、炎症性肠病 (IBD)、系统性红斑狼疮 (SLE)、原发性干燥综合征 (pSS)、系统性硬化症 (SSc)、特发性炎症性肌病 (IIM)、巨细胞动脉炎 (GCA) 和多发性硬化症 (MS)] 之间共享的靶向疗法。结果:我们确定了 142 种共同的靶向疗法。共用靶向治疗最多的四种疾病是 RA ( n = 92)、cPso ( n = 67)、IBD ( n = 58) 和 SLE ( n = 56)。靶向治疗重叠最重要的两组疾病是 RA 和 SLE 以及 RA、SpA、cPso 和 IBD。五种或五种以上疾病共用的靶向治疗是阿巴西普、乌司他单抗、利妥昔单抗、阿那白滞素、依那西普、英夫利昔单抗、苏金单抗、托法替尼、阿仑单抗、托珠单抗、阿达木单抗、阿普斯特、巴瑞替尼、贝利木单抗、布罗达单抗、非戈替尼和乌帕替尼。最常靶向的分子和通路为(按频率降序排列):JAK-STAT 通路、Th17 轴、TNF-α、IL-6、共刺激分子、BAFF、CD20、BTK、趋化因子和整合素、IL-1 和 I 型干扰素。结论:多种靶向疗法是在多种艾滋病中开发的,反映了致病途径的重叠和药物再利用的潜力。这表明,对当前基于临床的艾滋病分类进行修订,使其更基于机制的分类可能是有意义的。
克罗恩病和溃疡性结肠炎统称为炎症性肠病 (IBD),是一种慢性全身性炎症性疾病。1 这些疾病主要影响胃肠道,但可以通过肠外表现(例如外周和中轴关节炎、巩膜炎、原发性硬化性胆管炎或坏疽性脓皮病)影响许多器官系统。2 溃疡性结肠炎仅限于结肠,而克罗恩病的特征是从口腔到肛门的胃肠道不连续地受到影响,并出现狭窄、脓肿或瘘管,并穿透邻近器官或肛周皮肤。初始临床表现取决于疾病的程度和活动性,可能包括腹痛、腹泻(通常除了白天外,夜间也会出现),并伴有排血和粘液、发烧和肠梗阻的临床症状,以及贫血和炎症的实验室标志物升高。由于无法治愈,IBD 会增加与不受控制的炎症相关的各种消化系统和其他恶性过程的风险 3 ,并且可能影响几乎整个人体,因此需要全科医生和专科医生之间的密切合作,进行终生护理以防止或延缓进展。对克罗恩病和溃疡性结肠炎 4 复杂发病机制的深入了解已导致了一种治疗策略(图 1),该策略侧重于硬终点(例如临床和内镜缓解) 5 和炎症级联的精确分子靶向。自 1997 年报道使用英夫利昔单抗 6(一种抗肿瘤坏死因子 α [TNF-α] 的单克隆抗体)治疗克罗恩病以来,另外三种抗 TNF-α 抗体、两种抗整合素抗体、一种抗白细胞介素-12/23 p40 亚基的生物制剂、一种 Janus 激酶 (JAK) 抑制剂和一种鞘氨醇-1-磷酸 (S1P) 受体调节剂已被批准用于治疗 IBD,扩大了治疗选择,但也使初始选择和后续治疗变得复杂。在这篇综述中,我们讨论了如何启动、切换、组合和终止此类疗法。
经过近四十年的试验,治疗骨肉瘤 (OS) 转移一直没有显著的疗效。这促使我们利用其四个双向突变阶段阐明骨肉瘤疗法。简要介绍了历史发展和临床进展,以刷新骨肉瘤治疗的现状。然而,转移的主要问题仍未解决,占肺转移死亡的 90%。因此,这个转移问题与长期免疫治疗肿瘤后引起的免疫逃逸和化学耐药有关。因此,讨论突变阶段的关系周期是合理的,包括肿瘤发生、转移、免疫逃逸和化学耐药。尽管已经开发了许多组合和靶向疗法来强化这些突变治疗,但具有更高治愈率的成功临床转化仍然很少。通过这篇综述,深入了解了四个骨肉瘤突变阶段与其各自疗法之间的双向关系。在此,我们总结了治疗肿瘤发生的药物,包括胶原β(1-O)半乳糖基转移酶2抑制剂、转化因子2β、具有GTPase结构域1的ArfGAP、miR-148a和miR-21-5p胞外囊泡和长链非编码RNA白血病抑制因子受体反义RNA1。接下来治疗转移的药物是AXL受体酪氨酸激酶、miR-135a-5p、信使RNA B细胞淋巴瘤-6、转化生长因子β1、T细胞免疫球蛋白和粘蛋白结构域蛋白-3、细胞因子信号传导抑制因子-5、癌症易感性15、Krüppel样因子3反义RNA 1、程序性细胞死亡4、自噬相关基因5和Rab22a-NeoF1。其次治疗免疫逃逸的药物有N-cadherin、泛素特异性肽酶12抑制剂、潜伏期相关肽域抑制剂、抗Wnt2 mAb、抗αvβ8整合素、己糖激酶-2介导的i-κ-b-alpha、吲哚胺2,3-双加氧酶抑制剂与NO、TGF-βRII与抗IgG1。最后治疗化疗耐药的药物有二氢叶酸还原酶、叶酰多聚-γ-谷氨酸合成酶、热休克蛋白-90AA1、XCT-790、安罗替尼酪氨酸激酶抑制剂、胰岛素样生长因子1。希望本文能为科学家和临床医生提供参考和指导。
腺病毒(ADS)表现出了显着的成功,因为它是复制(RD)病毒载体的疫苗,以及基因治疗和癌症治疗的广泛潜力。ad载体通过二级细胞整合素相互作用在病毒纤维旋钮和细胞表面受体之间的直接相互作用来转导人类细胞。在广泛的系统发育中, AD受体使用情况各不相同。 经常研究人类AD血清型5(AD5),以及在许可的Chadox1 NCOV-19疫苗中的黑猩猩AD衍生的矢量“ Cha-Dox1”,两者都与Coxsackie和腺病毒受体(CAR)相互作用,这在人类上皮细胞和Eryperial cellial and Erytherth-eRyth-ryyth--rocytees中表达。 CAR使用对于靶向基因递送到具有低/负CAR表达的细胞(包括人DEN-DIRITICS)(DCS)和血管平滑肌细胞(VSMC)的细胞。 我们评估了用人类AD血清型49的旋钮键入的RD AD5矢量伪伪伪伪载体的性能,称为AD5/49K载体。 AD5/49K显示,使用5T4肿瘤相关的抗原在小鼠癌疫苗模型中评估时,鼠和人类DC超过了AD5,其转化为AD5。 此外,AD5/49K表现出增强的原代人VSMC的转导。 这些数据突出了用于血管基因治疗的AD5/49K载体的潜力,并作为有效的疫苗载体。AD受体使用情况各不相同。经常研究人类AD血清型5(AD5),以及在许可的Chadox1 NCOV-19疫苗中的黑猩猩AD衍生的矢量“ Cha-Dox1”,两者都与Coxsackie和腺病毒受体(CAR)相互作用,这在人类上皮细胞和Eryperial cellial and Erytherth-eRyth-ryyth--rocytees中表达。CAR使用对于靶向基因递送到具有低/负CAR表达的细胞(包括人DEN-DIRITICS)(DCS)和血管平滑肌细胞(VSMC)的细胞。我们评估了用人类AD血清型49的旋钮键入的RD AD5矢量伪伪伪伪载体的性能,称为AD5/49K载体。AD5/49K显示,使用5T4肿瘤相关的抗原在小鼠癌疫苗模型中评估时,鼠和人类DC超过了AD5,其转化为AD5。此外,AD5/49K表现出增强的原代人VSMC的转导。这些数据突出了用于血管基因治疗的AD5/49K载体的潜力,并作为有效的疫苗载体。
海报展示 1 49 (PO-01) Igor Varga - 自动颅骨缝合线检测用于小鼠表型分析 51 (PO-02) Michaela Šímová - 揭示小鼠卵黄囊中红细胞和髓系祖细胞的出现 52 (PO-03) Olha Pyko - 揭示 ZNF644 缺失的影响:研究 C2H2 锌指蛋白在小鼠雌性表型中的作用 53 (PO-04) Rodolfo Favero - 开发和鉴定 Netherton 综合征的条件性 Spink5 基因敲除小鼠模型 54 (PO-05) Hirotoshi Shibuya - 使用新型增强微型 CT 开发高通量、高分辨率软组织成像方法 55 (PO-06) Matilde Vale - 开发用于治疗钻石的治疗性外泌体和基因疗法黑粉病 (DBA) 56 (PO-07) Sabina Cerulová - 最初创建的具有罕见 GALNT3 突变的小鼠模型中钙磷酸代谢失调 57 (PO-08) Zhenni Liu - 探索 GPR45 在代谢调节中的作用及其对肥胖和相关疾病的影响 58 (PO-09) Eni Tomovic - 在捷克儿科患者中检测到的 GRIN 变异的遗传和功能分析 59 (PO-10) Ben Davies - Grem1 (88 kb) 和 Taf1 (166kb) 基因的人类基因组人源化 60 (PO-11) Federica Gambini - 用于 SARS-CoV-2 研究的新型可诱导 hACE2 小鼠模型的表征:对急性感染和长期 COVID 的见解 61 (PO-12) Klevinda Fili - 携带神经发育疾病相关变异的小鼠的表征62 (PO-13) Vera Abramova - 敲除 NMDA 受体 grin2Aa 和 grin2Ab 基因的斑马鱼幼虫的特征:基因表达和游泳行为 63 (PO-14) Hana Kolesová - Jagged1 条件性缺失和基于患者的单一变体小鼠模型的形态学和生理学 64 (PO-15) Petr Nickl - AAV 载体在小鼠植入前胚胎中进行多步等位基因转换 65 (PO-16) Silvia Mandillo - 肌肉特异性基因编辑改善了 1 型肌强直性营养不良小鼠模型中的分子和表型缺陷 66 (PO-17) Kristýna Neffeová - 法洛四联症小鼠模型中 Jagged1 缺失的生理和形态学后果 67 (PO-18) Tomasz Kowalczyk - 蛋白质组学PACS2 基因突变小鼠软组织的分析 68 (PO-19) Dominik Cysewski - PACS2 E209K 突变小鼠脑组织的蛋白质组学和代谢组学分析:深入了解分子失调 69 (PO-20) Betul Melike Ogan - FAM83H 在免疫系统稳态中的作用 70 (PO-21) Maximilián Goleňa - C57Bl/6NCrl 小鼠测量参数的季节性 71 (PO-22) Tobiáš Ber,Kateryna Nemesh - 陆生蛞蝓作为研究 RNA 沉默途径的潜在动物模型 72 (PO-23) Gunay Akbarova-Ben-Tzvi - 修饰的 TGF-β β 家族对整合素-ββ1 合成软骨细胞片的影响 73 (PO-24) Arkadiusz Żbikowski - PACS2 综合征对小鼠肺和肾结构的影响 75 (PO-25) Viktor Kostohryz - 附加基因治疗的前景 76 (PO-26) Miles Joseph Raishbrook - Fam84b 在视网膜稳态中的重要性 77 (PO-27) JI XU - 转录辅阻遏物 TLE1 是脂肪细胞分化的积极因素 78 (PO-28) Sylvie Dlugosova - 骨骼畸形和矿化缺陷Fgf20 KO 小鼠 79
Cardiomyocyte mechanical memory is regulated through the talin interactome and DLC1 dependent regulation of RhoA Emilie Marhuenda 1* , Ioannis Xanthis 1* , Pragati Pandey 1 , Amar Azad 2 , Megan Richter 2 , Davor Pavolvic 2 , Katja Gehmlich 2,3 , Giuseppe Faggian 4 , Elisabeth Ehler 5,James Levitt 5,Simon Ameer-Beg 5,Thomas Iskratsch 1 1 1 1工程与材料科学学院,伦敦皇后大学,英国皇后大学,英国皇后大学2伯明翰大学心血管科学研究所,伯明翰大学B15 2TT,英国伯明翰大学3 2TT,英国3,心血管疾病医学司3意大利维罗纳市维罗纳(Verona)的CardioChirurgia discorte Ospedaliero discorte and Angebolic Medicine and Sciences,英国伦敦国王学院(King's College)的心血管和代谢医学与科学学院 *同等贡献通信:t.iskratsch@qmul.ac.ac.ac.ac.ac.ac.uk摘要机械特性是许多在健康或疾病方面的生物学过程。同样,在心脏中,机械信号越来越清楚地参与了疾病进展。心肌细胞通过整合素和相关蛋白(包括机械敏感的蛋白塔林作为积分成分),将其环境的机械性能感知到其环境的机械性能。我们以前的工作表明塔林张力的不同模式,具体取决于细胞外基质刚度。在这里,我们想研究这如何导致下游机械转导变化,从而进一步影响心肌细胞表型。这表明了机械记忆,我们在小鼠心脏中进一步证实了它。机械信号再次变化,包括例如在光漂白(FRAP)实验后结合免疫沉淀和荧光恢复,我们确定塔林相互作用的蛋白质DLC1,RIAM和PAXILLIN各自优先在特定的细胞外基质刚度下与Talin结合,即使在缺乏张力的情况下也可以保留这种相互作用。机械记忆通过相关的激酶途径调节。使用Lovtrap系统的光遗传学实验证实了各个蛋白质之间的直接竞争,该蛋白再次通过磷酸化而改变。DLC1以刚度依赖性的方式调节RhoA活性,而DLC1的损失和过表达导致肌原纤维混乱。一起研究表明,将机械信息烙印到塔林 - 相互作用中的一种机制,从而对心脏健康和疾病产生了影响。引言心肌细胞是心脏中的收缩细胞,其适当功能通过包括电气,化学和机械信号1的复杂信号网络进行调节。压力和从心脏充满血液中伸展,但同样重要的是感应额外的细胞基质的刚度。后者在开发过程中正在发生变化。重要的是,在衰老和心脏病中,它也正在发生变化,在这种疾病中,通过赖氨酸氧化酶(LOX)(LOX)和LOX酶的胶原蛋白过度交联,可以导致心脏僵硬,心肌细胞表型变化,心脏故障,而保留的射血分数(HFPEF)(HFPEF)2-9。肌营养不良蛋白糖蛋白复合物)和/或信号传导10。心肌细胞通过所谓的Costameres,肌肉Z-DISC水平的肋骨状结构,含有整联蛋白以及其他多分子络合物(例如) 心肌细胞整联蛋白粘附具有许多蛋白质,这些蛋白质在局灶性粘连中也有许多蛋白质,包括附着在细胞质肌动蛋白上的Talin和Vinculin。心肌细胞通过所谓的Costameres,肌肉Z-DISC水平的肋骨状结构,含有整联蛋白以及其他多分子络合物(例如心肌细胞整联蛋白粘附具有许多蛋白质,这些蛋白质在局灶性粘连中也有许多蛋白质,包括附着在细胞质肌动蛋白上的Talin和Vinculin。