n 2015年7月,全世界敬畏地注视着冥王星的特写照片,从三十亿英里之外播放回地球。航天器的新视野已经旅行了九年,研究了我们太阳系边缘的矮行星。由于任务,科学家发现冥王星不仅是巨大的冰球。它具有熔融芯,构造板和火山活性,就像地球一样。它甚至可以支持某种形式的生活。新的视野任务被誉为人类创造力的胜利,也是太空探索的未来的巨大飞跃。但几乎没有发生。任务必须克服一些严重的挑战,然后才能进行,例如一再向其退还的威胁。总是有反对者质疑对太空探索的需求。的论点是,美国有更多重要的事情要花钱,例如消除饥饿和贫穷。其他人认为,成功的太空计划增加了我们的国家声望,帮助经济,创造就业机会并改善国家安全。它激发了学生从事科学技术领域的创新项目和职业。以联邦预算的十分之一的成本,这是值得的:勘探成本远远超过了将人类的影响力范围扩展到外太空的想法。并不是继续太空计划的真正原因。 Griffin指出,人们出于不一定合乎逻辑的原因去空间。并不是继续太空计划的真正原因。Griffin指出,人们出于不一定合乎逻辑的原因去空间。换句话说,金钱对
过去几十年来,随着新一代测序 (NGS) 技术、创新的生物信息学工具和大量可用生物信息的进步,组学技术的部署得到了令人难以置信的推动。备受瞩目的主要组学技术是基因组学、转录组学、蛋白质组学、代谢组学和表型组学。这些生物技术进步使作物育种现代化,为开发具有改良性状的作物品种开辟了新视野。几种作物的基因组已被测序,并且已鉴定出大量与关键经济性状相关的基因。这些已鉴定的基因不仅为理解作物性状的调控机制提供了见解,而且还为协助作物的分子育种提供了实际依据。本综述讨论了组学技术在获取生物信息和挖掘与重要粮食和纤维作物(如小麦、水稻、玉米、马铃薯、番茄、木薯和棉花)的重要农艺性状相关的基因方面的潜力。还重点介绍了用于验证这些重要基因的不同功能基因组学方法。此外,通过组学方法发现的一系列基因被视为最新基因组工程方法进行基因改造的潜在目标,用于开发气候适应性作物,进而为确保全球粮食安全提供巨大动力。
高级分析与医疗保健的结合为根据个体患者调整医疗措施开辟了新视野,彻底改变了个性化医疗领域。通常,机器学习算法能够分析大量不同的患者数据。这些数据可能包括遗传信息、临床记录、生活方式因素和其他基本数据。利用算法,医疗保健专业人员可以从数据中提取宝贵的见解和模式,根据个人特征和需求提供定制解决方案。机器学习在精准诊断和治疗建议中也发挥着重要作用。它能够分析患者特征、遗传因素和治疗反应,并预测药物反应、不良事件和最佳剂量水平。这使医疗保健提供者能够通过改善更多的治疗效果来推荐副作用最小的药物。此外,机器学习在公共卫生中的应用将为传染病监测和爆发提供更准确的预测。此外,机器学习算法还可以通过分析社交媒体信息、气候数据和地理信息等多种数据源来检测疾病爆发的早期预警信号。这将使公共卫生官员能够及时采取干预措施,从而减轻传染病对人口健康的影响。从疾病预测到疫情监测,机器学习能够重塑公共卫生格局,实现基于证据的决策,并最终改善个人和社区的健康状况。本期特刊旨在吸引该领域专业人士的原创研究论文,以提供可以塑造个性化医疗未来并改善公共卫生结果的见解。潜在主题包括但不限于:
米歇尔(Michelle)因她的多样性从业人员的工作而获得了许多奖项和赞誉。她已获得多元化女性精英100和黑人企业的认可,是2020年,2019年,2018年,2017年的公司多样性高管之一,以及2023年的BE Gamechanger奖。牧师Al Sharpton牧师在纽约市Black Institute Awards Gala的获奖者和2015年Ebony Magazine Power 100 Honoree中认可米歇尔(Michelle)在国家行动网络“女性权力”午餐会上成为2016年的获奖者。在她的整个职业生涯中,米歇尔(Michelle)在《黑色企业》杂志,多样性公司,多样性执行官,乌木,精华,财富,历史创造者,心脏和灵魂,新视野,科学杂志,《姐妹姐妹》,《华尔街时报》,《华尔街日报》,《目标市场》,《纽约时报》,《纽约时报》,《纽约时报》,《纽约时报》,《纽约时报》,2006年在2006年被网络杂志评为40名杰出管理人员中的一员。她的其他值得注意的贡品包括:被无与伦比的玛雅博士(Maya Angelou)博士授予2010年玛雅之路的多样性领导奖,并获得了2008年哈佛黑人黑人男子论坛年度女商人奖,并接受了彩虹推动联盟的桥梁建设者奖,并获得了荣誉奖的杰克·杰克逊(Jesse L.多样性和包容性。2013年,米歇尔被任命为瑞士达沃斯世界经济论坛全球性别平等咨询委员会的成员。
摘要:增强现实(AR)显示将虚拟图像叠加在周围场景上,在视觉上融合了物理世界和数字世界,为人机交互开辟了新视野。AR显示被认为是下一代显示技术之一,引起了学术界和工业界的极大关注。当前的AR显示系统基于各种折射、反射和衍射光学元件的组合,例如透镜、棱镜、镜子和光栅。受底层物理机制的限制,这些传统元件仅提供有限的光场调制能力,并且存在体积大、色散大等问题,导致组成的AR显示系统尺寸大、色差严重、视场窄。近年来,一种新型光学元件——超表面的出现,它是亚波长电磁结构的平面阵列,具有超紧凑的占地面积和灵活的光场调制能力,被广泛认为是克服当前AR显示器所面临的局限性的有效工具。本文旨在全面回顾超表面增强现实显示技术的最新发展。我们首先让读者熟悉增强现实显示的基本原理,包括其基本工作原理、现有的基于传统光学的解决方案以及相关的优缺点。然后,我们介绍光学超表面的概念,强调典型的操作机制和代表性的相位调制方法。我们详细介绍了三种超表面设备,即超透镜、超耦合器和超全息图,它们为不同形式的增强现实显示提供了支持。详细解释了它们的物理原理、设备设计和相关增强现实显示的性能改进。最后,我们讨论了超表面光学在增强现实显示应用中面临的现有挑战,并对未来的研究工作提出了展望。
NARDA-MITEQ 客户最终用户计划 诺斯罗普·格鲁曼公司 NASA NPOESS 诺斯罗普·格鲁曼公司 - Corvair NT-Space JAXA 全球降水测量 喷气推进实验室 NASA 火星科学实验室 Comdev JPL Cloudsat NASA NASA 水瓶座应用物理实验室 NASA 新视野号 ASTRIUM GmbH DLR TanDEM X ASTRIUM SAS ISRO Megatropics MacDonald Dettwiler CSA Radarsat ll ALCATEL Space 德国国防部 SAR-Lupe ALCATEL Space JPL Jason-2 洛克希德·马丁公司 USAF Alpha Extension 波尔多大学 ESA Herschel SRON ESA Herschel Technologica CSA Herschel Max Plank 研究所 ESA Herschel Dornier DLR TerraSAR-X 喷气推进实验室 NASA Miro、EOS-MLS Assurance Technology 美国海军 Windsat ITT USAF Alpha l-lV 摩托罗拉/GD USAF P-94-99、02 E-Systems JPL SEAWINDS Matra Marconi EUMESAT MHS E-Systems JPL GEOSAT Aerojet 美国空军 SSMIS、AMSU-B Millitech 美国空军 SSMIS Lockheed 美国空军 STS-54 应用物理实验室 美国海军 Seasat、Spinsat、Topex、扩展试验台 Millitech Ball Aerospace 全球微波成像仪 Harris 美国空军 Alpha Extension 喷气推进实验室 NASA AURA 喷气推进实验室 ESA 罗塞塔号和着陆器 CONAE CONAE 水瓶座/SAC-D 诺斯罗普·格鲁曼 NOAA JPSS 喷气推进实验室 NOAA COSMIC 喷气推进实验室 NASA GRAIL JHU/APL NASA 辐射带风暴探测器 (RBSP)
2024 年 10 月 21 日——马德里深空通信综合体 (MDSCC) 本周一纪念了一件大事。今年是 1964 年 1 月 29 日 60 周年,当时西班牙、美国政府、INTA 和 NASA 首次签署了西班牙综合设施运营和维护合同。今天,位于罗夫莱多德查韦拉的太空综合体在西班牙和美国当局的出席下庆祝了这一重要里程碑。MDSCC 的建设始于 1964 年 8 月,但直到第二年,随着第一根直径为 26 米的天线的完工,它才开始运行。该设施在创纪录的时间内完工,因为它的全面可操作性对于接收来自水手四号任务的数据至关重要,该任务捕捉到了另一颗行星(火星)的第一张图像。事实上,MDSCC 是深空网络的三个全球通信中心之一,另外两个是位于澳大利亚堪培拉和加利福尼亚州戈德斯通的通信中心。罗夫莱多航天中心负责跟踪、控制和遥测各种航天任务,例如用于研究木星和土星的卡西尼-惠更斯号、用于研究 67P/丘留莫夫-格拉西缅科彗星的罗塞塔号、用于探索太阳系边界的航海者 1 号和 2 号以及新视野号,以及用于在红外光下观察天空的詹姆斯·韦伯太空望远镜。这次会议的目的不仅是为了庆祝航天中心这些年来取得的成功和可操作性,也是为了重申西班牙和美国、INTA 和 NASA 在未来 60 年的合作,目的是通过未来的任务继续扩大我们对太空的了解。这些任务包括阿尔特弥斯号,它
克里斯·克拉夫特的传奇 铁拳:卡尔·凯克哈弗的人生 埃文鲁德·约翰逊和 OMC 的传奇 默默服务:电船的传奇 胡椒博士/七喜的传奇 霍尼韦尔的传奇 布里格斯·斯特拉顿的传奇 英格索兰的传奇 斯坦利的传奇:斯坦利工厂 150 年 微时代之道 哈里伯顿的传奇 约克国际的传奇 纽柯公司的传奇 固特异的传奇:第一个 100 年 AMP 的传奇 赛斯纳的传奇 VF 公司的传奇 AMD 的精神 罗文的传奇 新视野:阿什兰公司的故事美国标准的历史 水星海事的传奇 联邦大亨的传奇 逆境求生:Inter-Tel——第一个 30 年 辉瑞的传奇 心灵状态:您的实用指南与 Larry W. Stephenson, M.D. 一起探讨心脏和心脏外科手术Worthington Industries 的传奇 IBP 的传奇 Trinity Industries, Inc. 的传奇Cornelius Vanderbilt Whitney 的传奇 Amdahl 的传奇 Litton Industries 的传奇 Gulfstream 的传奇 与 David A. Patten 一起探讨 Bertram 的传奇 Ritchie Bros. Auctioneers 的传奇 与 David A. Patten 一起探讨 ALLTEL 的传奇 与 Anthony L. Wall 一起探讨 Invacare Corporation 的“是的,你可以” 气球中的船:波士顿科学公司的故事和微创医学的发展 Day & Zimmermann 的传奇 Noble Drilling 的传奇 五十年的创新:Kulicke & Soffa Biomet — 从华沙走向世界,与 Richard F. Hubbard 一起探讨 NRA:美国传奇 RPM, Inc. 的传统和价值观Marmon 集团:第一个五十年格兰杰传奇
随着对光和物质波场的量子性质的研究取得最新进展,量子工程这一新领域应运而生。量子工程为量子计量学测试基本物理定律开辟了新视野,在空间和时间测量方面达到了前所未有的精度水平。相关的新型量子技术催生了原子钟和传感器,可在全球大地测量、惯性传感、导航和激光测距中得到广泛应用。德国联邦物理技术研究院 (PTB) 一直致力于开发超越最先进水平的精密测量技术。多年来,PTB 与汉诺威莱布尼茨大学 (LUH) 一直有着出色的合作伙伴,尤其是数学、物理和大地测量学院的研究所,以及马克斯普朗克引力物理研究所 (Albert Einstein Institute, AEI),这些研究所在量子工程和密切相关领域开展着顶级研究。此外,与汉诺威激光中心 (LZH) 和不来梅大学应用空间技术和微重力中心 (ZARM) 的密切合作已被证明是卓有成效的。这个强大的社区是最终导致建立 QUEST(量子工程和时空研究中心)的先决条件,该中心是汉诺威莱布尼茨大学的卓越中心。因此,QUEST 汇集了这些合作伙伴的杰出专业知识,以在汉诺威-布伦瑞克地区共享知识并提高该地区的实力。该集群的核心思想是将量子工程、量子传感器、时空和使能技术这四个主要研究领域联系起来,并建立有前景的研究活动,特别是在这些领域的交界处。因此,PTB、LUH、AEI、LZH 和 ZARM 之间的未来合作将通过各种 QUEST 措施得到系统加强,例如通过在 PTB 校园内建立联合教授职位和研究小组。在本出版物中,读者将获得 QUEST 合作伙伴的概述以及 PTB 正在进行和计划中的 QUEST 相关研究活动。我们希望 PTB 的新 QUEST 研究所能够不负众望,为量子工程和时空研究的科学技术做出领先贡献。我们希望您喜欢阅读本期内容。
及早使用靶向放射性核素疗法 (TRT) 根除播散性肿瘤细胞 (DTC) 可能治愈肿瘤。需要选择合适的放射性核素。这项工作强调了 103 Pd(T 1/2 = 16.991 d)衰变为 103m Rh(T 1/2 = 56.12 min)然后衰变为稳定的 103 Rh 并发射俄歇电子和转换电子的潜力。方法:使用蒙特卡洛径迹结构代码 CELLDOSE 评估单个细胞(直径 14 μ m;细胞核 10 μ m)和 19 个细胞簇中的吸收剂量。放射性核素分布在细胞表面、细胞质内或细胞核内。在能量归一化后比较了 103 Pd、177 Lu 和 161 Tb 的吸收剂量。研究了非均匀细胞靶向的影响以及双重靶向的潜在益处。如果直接使用 103m Rh,则会提供与其相关的其他结果。结果:在单个细胞中,根据放射性核素的分布,103 Pd 比 177 Lu 传递的核吸收剂量高 7 到 10 倍,膜剂量高 9 到 25 倍。在 19 个细胞簇中,103 Pd 的吸收剂量也大大超过 177 Lu。在这两种情况下,161 Tb 都位于 103 Pd 和 177 Lu 之间。考虑到簇内有四个未标记的细胞,非均匀靶向会导致中度至重度剂量异质性。例如,对于核内 103 Pd,未标记的细胞仅接受预期核剂量的 14%。使用两种 103 Pd 标记放射性药物进行靶向可最大限度地减少剂量异质性。结论:103 Pd 是新一代俄歇发射源,它能够向单个肿瘤细胞和细胞簇发射比 177 Lu 更高的吸收剂量。这可能为 TRT 在辅助或新辅助治疗中的应用,或针对微小残留病灶开辟新视野。