在这个电路中,导线代表量子比特,方块代表应用于它们的量子操作或门。虽然这个理想电路在理论上可以完美运行,但在实践中,许多事情可能会出错。例如,硬件可能不完美,有时门可能会失效,并执行与预期完全不同的操作。另一种可能性是,来自环境的杂散粒子可能会与其中一条导线相互作用,从而导致该量子比特出现错误。所有这些都是噪声的例子,它们都有可能破坏计算,导致输出无用。解决这个问题的一种可能方法是设计非常精确的硬件,即使长时间的计算也不会出现错误。粗略地说,如果理想的量子电路由 T 个量子门组成,那么我们可能希望我们的量子计算机在每个门上出现错误的概率最多为 p ≤ O (1 /T )。但在实践中,情况要糟糕得多。例如,1995 年,即 Shor 算法问世一年后,一台实验性量子计算机实现了每门 20% 的错误概率 [?](这意味着它可以
图 2:Cu(111) 上的电压脉冲。a) 3 . 5 × 3 . 5 nm 2 STM 初始状态的形貌图像,其中暗(HS)邻居(V = 0 . 3 V,I = 5 pA)和 b) 4 . 8 × 4 . 8 nm 2 STM 初始状态的形貌图像,其中亮(LS)邻居(V = 0 . 3 V,I = 5 pA)。黑点表示两种环境中电压脉冲的位置。c)、d) 分别在暗(HS)和亮(LS)邻居的 0.5 V 电压脉冲期间记录的典型 I(t) 轨迹。e)、f) 分别在暗(HS)和亮(LS)邻居的 I(t) 轨迹的每个平台的电流乘以持续时间(I×∆t)的分布。红色圆圈(蓝色方块)对应于从亮(LS)到暗(HS)(暗(HS)到亮(LS))分子的实验事件分布。虚线对应于每个分布的单指数拟合。g)、h) 两种环境下 LS 和 HS 状态在 0.5 V 时的相对势能示意图。
图 2. (a) 对于 𝐼 𝑎𝑐,𝑀𝐴𝑋 = 70.7 μA 和 𝑓 𝑎𝑐 = 800 MHz,整流直流电压与施加到自旋转矩二极管的直流电流的关系图,蓝色圆圈是微磁模拟的结果,红线是抛物线拟合。 (b) 对于 (a) 中的相同 𝐼 𝑎𝑐,𝑀𝐴𝑋 和 𝑓 𝑎𝑐,固有相移 (空心方块) 和沿 x 轴的磁化幅度 (实心菱形) 与直流电流的关系。 (c) 固有相移与微波频率和直流电流的关系相位图,其中 𝐼 𝑎𝑐,𝑀𝐴𝑋 = 70.7 μA 。垂直线表示自振荡电流阈值 |𝐼 𝑡ℎ | = 0.056 mA 。水平线表示图 (a) 和 (b) 中使用的微波频率值。(d) 图 (c) 中用圆圈表示的工作点的施加电流 (左侧 y 轴) 和磁化强度 < 𝑚 𝑋 > 的空间平均 x 分量 (右侧 y 轴) 的时间轨迹。图中还标出了两个时间轨迹之间的时间偏移 Δ 𝑡。
• 3D 合成视觉 – 在主飞行显示器 (PFD) 上实时显示三维地形、障碍物和交通状况。• 空中高速公路 (HITS) 导航 – 根据当地地形和飞机位置,在 PFD 上为飞机提供 3D 高速公路供其飞行。PFD 上显示一系列不断减小的方块,供直升机飞行。• 地理参考悬停矢量 – 允许您悬停在已知点上。• 直升机地形感知系统 (HTAWS) – 全球地形数据库与 GPS 位置相结合。• 图形飞行管理系统 (FMS) – 中央导航和通信管理系统。• 全彩色、高分辨率、阳光下可读(1,000 尼特)LCD 屏幕,亮度完全可调 • 双重冗余背光 • 输入:ADHRS、GPS 接收器(全部包含) • DO-178B、A 级软件 – 最高批准级别是 IFR 许可的关键要素。• NVIS-A 和 NVIS-B 夜视镜兼容性 • 最后五次飞行的数字飞行性能记录 • 冗余显示器/传感器架构 – 显示器故障将恢复到主飞行显示器。• 符合 RNP 0.3/BRNAV/PRNAV 标准 – 允许飞机使用 GPS 进行精确导航。
图 2 。皮质电极的手术植入。(A)进行清醒刺激映射以确定植入位置。在刺激期间导致言语停止的区域(深蓝色)后方确定了额下回 (IFG) 的非言语区域(深蓝色条纹)。通过刺激期间各个手指上感知到的感觉报告(红色、橙色、浅蓝色、紫色)来定位初级体感皮质的手部区域。选定的植入阵列位置以黑色方块表示。(B)大脑中植入电极的位置,叠加在术前结构 MRI 上。S1 阵列针对(A)中的食指和无名指尖位置。M1 阵列直接放置在中央沟上,针对手部和手臂区域。 IFG 阵列瞄准 44 区边界和腹侧运动前区 (PMv) 皮质,145 而 AIP 阵列瞄准顶叶和中央后沟的内侧交界处。C) 阵列基座 146 位置的 CT 图像以及与植入阵列相关的电缆。(D) 术后愈合的阵列基座出口部位的图像,带 147 和不带盖帽(系统不使用时就位)。148
图 2:气压棒膨胀和变形的特性。a、气压棒结构的垂直切割示意图。通道的几何形状可以简化为两个无量纲参数:相对高度 Ψ = h/(h + 2e) 和通道密度 Φ = d/(d + d w ),其中 d 为通道宽度,d w 为壁宽,h 为通道高度,e 为覆盖膜厚度。b、当 Φ = 0.69 ± 0.05 时,目标平行和纵向应变对压力的依赖性,以及当 Φ = 0.5 ± 0.02 时,目标平行和纵向应变对压力的依赖性。实线对应没有任何拟合参数的模型(在我们的简化模型中,ε∥消失)。c、气压棒被编程为在加压时呈圆锥体。倾斜角记为 α。 d,对于不同参数的气压计,实验和理论(实线,无拟合参数)α 随施加压力的变化:红色菱形(Ψ = 0.78±0.05,Φ = 0.5,R = 50mm,H = 3.8±0.2mm);蓝色三角形(Ψ=0.74,Φ=0.5,R=40mm,H=5.4mm);紫色旗帜(Ψ=0.68,Φ=0.2,R=50mm,H =6mm);绿色方块(Ψ=0.6,Φ=0.5,R=40mm,H =6.7mm)。
布局面板位于上述窗口的屏幕左侧。在此窗口中,最上方的字段显示当前选定的图层(在本例中为“Deep N Well”)。下拉框允许您选择显示所有可用图层中的哪些图层。除了图层名称之外,您还会注意到左侧的方块显示了此图层中绘制的彩色多边形的示例,这些多边形将出现在您的设计中。您还可以单击每个图层“阴影”图标下的单选框以隐藏它们在设计中的外观(只需确保在完成之前重新启用它们)。您还会注意到一个数字,当我们完成设计时,它将用于表示该图层。您会注意到指南层没有数字,因为它仅用于我们不想在最终设计中打印的临时图纸和指导标记。在我们的示例中,我们使用了四个不同的层:“N 阱”、“P 阱”、“深 N 阱”和“Metal1”,另加一个称为“Guide”的附加层,它不会用于创建掩模,但我们将使用它来帮助我们可视化我们的设计。
图 1:PBDB-T/ITIC 共混物的 2DES 光谱揭示了空穴传输途径。a) PBDB-T 和 ITIC 的分子结构,以及通过 TD-DFT 计算的最低单线态的电荷密度分布。电子和空穴密度分布分别为紫色和黄色。腈基团 (CN) 以蓝色圈出。b) 纯 PBDB-T 薄膜、纯 ITIC 薄膜和 PBDB-T/ITIC 共混物的吸收光谱。图中的线表示 PBDB-T(黑色)和 ITIC(红色)的两个最低振动电子跃迁(0-0 和 0-1)。c) 在 600-720 nm 波长激发下并在 540 至 660 nm 范围内探测时,PBDB-T/ITIC 共混物在 20 fs 时的 2DES 吸收光谱。吸收光谱显示在 2DES 光谱的顶部和右侧。 2DES 光谱中的垂直和水平虚线以及吸收光谱中的线表示峰位置。轮廓间隔:最大振幅的 10%。d) 十字峰的时间响应(方块:实验数据;线:指数拟合)揭示了空穴转移动力学。相应的峰位置在 (c) 中用红色方框表示。
图 1. SPAAC 与 DBCO-PEG4-Fluor545 反应过程中形成的有机(β-D-葡萄吡喃叠氮化物)与无机(叠氮化钠)叠氮化物的三唑产物表现出不同的相对荧光强度。A) DBCO-PEG4-Fluor 545 与叠氮化物的点击化学或 SPAAC 反应产生的三唑产物取决于与 DBCO 部分反应的有机叠氮化物与无机叠氮化物的类型。这里显示了在 37°C 下 1X PBS 缓冲液(pH 7.4)中 DBCO-PEG4-Fluor 545 (200 µM) 与叠氮化钠或 β-D-葡萄吡喃叠氮化物 (400 µM) 底物发生 SPAAC 反应期间观察到的三唑部分特定吸光度 (B) 和整体产物荧光 (C) 的相对变化。有趣的是,虽然吸光度没有差异,但有机叠氮化物和无机叠氮化物的 SPAAC 反应产物的最终荧光读数明显不同。请注意,吸光度是在 309 nm 处测量的,而荧光是在 550 nm 激发和 590 nm 发射(570 nm 截止)处测量的。灰色方块和红色圆圈分别对应于在指定时间点收集的无机叠氮化物和有机叠氮化物的实验数据。线
图 1:O-IDFBR(a)、O-IDTBR 和 EH-IDTBR(b)的化学结构,P3HT:O-IDFBR(红色方块)(c)、P3HT:O-IDTBR(蓝色圆圈)、P3HT:EH-IDTBR(绿色三角形)(d)二元共混物的相图,这些共混物是基于首次加热 DSC 热分析图获得的。根据熔点下降情况,O-IDFBR 最初倾向于与 P3HT 混合,而不是 O-IDTBR 和 EH-IDTBR。二元 P3HT:O-IDFBR 的相图显示 40-80 wt% O-IDFBR 的组成窗口,其中 O-IDFBR 没有熔点下降,而 P3HT 熔点下降高达 70 wt% O-IDFBR。 40 wt% O-IDTBR 和 50 wt% EH-IDTBR 的共晶组成表明,与 EH-IDTBR 相比,O-IDTBR 的纯初晶开始发育得更早,且 O-IDTBR 的组成更低,这与 O-IDTBR 比 EH-IDTBR 具有更平面(潜在结晶)的化学结构相一致。e)、(f):测得的器件短路电流密度 J sc ,作为 P3HT:O-IDTBR 和 P3HT:O-IDTBR 非退火混合器件组成的函数。J sc 在共晶组成即 40-50 wt% 附近达到峰值,而 P3HT:O-IDFBR 的 J sc 峰值远低于可能的 80 wt% 共晶组成。