摘要 本文探讨了飞行模拟器的保真度要求,以改进训练并解决与旋翼机飞行中失控 (LOC-I) 相关的问题。为了说明背景,本文介绍了旋翼机事故统计趋势。数据显示,尽管最近采取了安全举措,但 LOC-I 旋翼机事故已被确定为事故率的一个重要且不断增长的因素。20 世纪 90 年代末,固定翼商用飞机界面临着与失控预防和恢复相关的类似情况,并通过协调的国际努力,制定了有针对性的培训计划以降低事故率。本文介绍了从固定翼计划中吸取的经验教训,以强调如何需要改进旋翼机建模和仿真工具,通过更高质量的基于模拟器的培训计划来减少旋翼机事故。本文回顾了相关的飞行模拟器认证标准,重点关注飞行模型保真度和前庭运动提示要求。旋翼机建模和运动提示研究的结果强调了相关的保真度问题,旨在确定进一步活动的领域,以提高用于 LOC-I 预防训练的模拟器标准的保真度。
本论文中表达的观点为作者的观点,不反映美国空军、国防部或美国政府的官方政策或立场。本材料被宣布为美国政府的作品,不受美国版权保护。
摘要 建立了倾转旋翼机接近航空母舰的路径规划模型,模型中考虑了倾转旋翼机的特点、着舰任务和航母所处环境。首先,给出了倾转旋翼机在各飞行模式下的运动方程和机动性能,给出了控制变量和飞行包线的约束条件。将倾转旋翼机返航分为3个阶段,对应倾转旋翼机的3种飞行模式,并设定了各阶段的约束条件和目标。考虑到倾转旋翼机的飞行安全性,将航母所处环境描述为可飞空间和禁飞区,并考虑运动航母所引起的湍流和风场的影响设定了禁飞区。将路径规划问题转化为在控制变量和状态变量约束下的优化问题。根据所建模型的特点,结合“逐步”和“一次性”路径搜索策略,设计了一种基于鸽派优化(PIO)的路径规划算法。仿真结果表明,倾转旋翼机能够以合理的着陆路径到达目标点。并通过对不同算法的比较,验证了PIO算法能够解决该在线路径规划问题。
2.1 旋翼机气动声学 ................................................................................................................ 19 2.1.1 飞机模式 ................................................................................................................ 20 2.1.2 直升机模式 ................................................................................................................ 22 2.1.3 过渡模式 ................................................................................................................ 25 2.2 旋翼机声学数据处理技术 ............................................................................................. 26 2.2.1 信号滤波 ................................................................................................................ 27 2.2.2 采样率 ................................................................................................................ 28 2.2.3 信号平均 ................................................................................................................ 28 2.2.4 声学图 ................................................................................................................ 29 2.2.5 距离校正 ................................................................................................................ 30 2.2.6 旋翼飞行器的声学指标 ................................................................................................ 32
本文将回顾先进旋翼机构型(包括复合直升机构型和倾转旋翼飞行器)数学建模的发展和应用。数学模型是飞行控制系统设计的基础,也是评估直升机飞行和操纵品质的重要工具。由于直升机是一个多体系统,其数学建模应考虑运动、惯性、结构和气动之间的耦合作用以及非定常和非线性特性,给出各部分的物理原理和数学表达。因此,直升机的数学建模是一个分析和综合不同假设和子系统模型的过程。此外,先进的直升机构型在气动干扰、桨叶运动特性和机动评估方面对直升机数学建模提出了更高的要求。本文将阐述直升机建模的关键问题,特别是先进旋翼机构型的建模。本文重点研究旋翼气动建模以及旋翼、机身和其他部件之间的气动相互作用。综合建模方法和机动性研究也是本文的重点。本文还对未来直升机飞行动力学建模的研究提出了建议。
减去乘客座位,旋翼机可以在地面附近安全飞行的最大重量、高度和温度,最大风速根据 CS 29.143(c) 确定,并且可能包括其他已证实的风速和方位角。操作范围必须在旋翼机飞行手册的限制部分中说明。
本文档包含指向包含欧盟法律的页面和/或 EASA 网站页面的链接。您不应点击这些链接,因为这些目标页面不会包含有关您的权利和义务的最新和准确描述。
— AMC 27 通则 已修订(第 15 条与 AB 协商) — AMC 27.45 已创建(第 15 条与 AB 协商) — AMC 27.865 已修订(第 15 条与 AB 协商) — CS 27.865 中的 AMC 1 号已修订(第 15 条与 AB 协商) — CS 27.865 中的 AMC 2 号已修订(第 15 条与 AB 协商) — CS 27.865 中的 AMC 3 号已修订(第 15 条与 AB 协商) — AMC MG 1 已创建(第 15 条与 AB 协商) — AMC MG 6 已修订(第 15 条与 AB 协商) — AMC MG 16 已创建(第 15 条与 AB 协商) — AMC MG 17 已创建(第 15 条与AB)— AMC MG 21 创建(第 15 条与 AB 磋商)— AMC MG 23 创建(第 15 条与 AB 磋商)
它将探索:• 军事任务模拟的特殊挑战• 当前安装的能力,包括成功经验和经验教训,• 在训练模拟中引入新技术的潜力。• 以飞机原始设备制造商为主要供应商的飞行模拟训练设备带来的好处。• MAA 使用批准与 EASA 类型认证方案的对比• 扩大和提高训练能力的未来机会
AW159 双引擎多任务军用直升机能够自主探测、识别和攻击陆地和海军目标,具有最先进的航空电子设备和任务系统,可让机组人员具有出色的态势感知能力,同时还配备全套自我保护措施,可在任何战区进行快速战术评估。