具有不寻常的电磁正确性的结构化材料在几种易流动作品1 - 4后引起了显着的关注,这表明,通过调整常规金属的微观结构和介电的微观结构,可以在此类媒体中从根本上改变光的传播。显着的效果,例如负折射,5,6个亚波长度成像,7,8披肩,9,10和通过无损的替代棱镜的调色板的反转,理论上预测了11个,在某些情况下进行了预测。某种程度上类似于常规的晶体材料,超材料通常由许多相同的夹杂物组成,这些夹杂物在常规晶格中排列。包含物的尺寸比辐射的波长小得多。在最简单的情况下,在最简单的情况下,仅使用少数有效的参数来实现电磁波传播的特征,可以通过使用均质化技术来简化这种复杂系统的研究,从而实现了电磁波传播的特征:有效的介电性和有效的渗透性。的确,超材料的一个重要特征是它们的磁反应可能非常强,尽管材料的基本成分通常是较大的或介电颗粒具有内在的磁性特性。1这种人工磁性是由夹杂物中引起的电流的沃克斯部分诱导的,在某些情况下,该部分可能非常接近对真正磁性粒子的反应。12
抽象背景:Boltzmann机器是基于能量的模型,已显示出对进化相关蛋白质和RNA家族的域的准确统计描述。它们是根据局部偏见的参数化,该局部偏向残留物保守性,以及对残基之间的上皮共进化的成对项。从模型参数中,可以提取目标域的三维触点图的准确预测。最近,这些模型的准确性也已根据它们在预测突变效应和在计算机功能序列中产生的能力方面进行了评估。结果:我们对Boltzmann机器学习的自适应实现,ADABMDCA通常可以应用于蛋白质和RNA家族,并根据输入数据的复杂性以及用户需求完成了几个学习设置。该代码可在https://github。com/anna-pa-m/adabm DCA上完全获得。举例来说,我们已经学习了三台Boltzmann机器模式 - Kunitz和beta-lactamase2蛋白结构域以及TPP-riboswitch RNA结构域。结论:ADABMDCA学到的模型与最先进的技术在此任务中获得的模型相当,就推论触点图的质量以及合成生成的序列而言。此外,该代码同时实现平衡和平衡性学习,这可以在平衡时进行准确而无损的训练,并在统一时间上过于态度,并允许使用基于信息的标准来修剪不相关的参数。
摘要。我们使用低成本,紧凑的拉曼光谱仪报告快速鉴定单个细菌。我们证明了60 s的程序足以在600至3300 cm-1的范围内获取全面的拉曼光谱。这次包括将小细菌聚集体的定位,单个个体的比对以及自发的拉曼散射信号收集。小细菌聚集体的快速定位,通常由小于十二个个体组成,是通过在24 mm 2的大型视野上进行镜头成像来实现的。无镜头图像还允许单个细菌与探测束的精确比对,而无需标准显微镜。在532 nm处的34兆瓦连续激光器的拉曼散射光被喂入定制光谱仪(原型龙卷风光谱系统)。由于该光谱仪的高光吞吐量,可接受的积分时间低至10 s。我们在七个细菌物种上总共记录了1200个光谱。使用此数据库和优化的预处理,获得了约90%的分类速率。我们的拉曼光谱仪的速度和敏感性为高通量和无损的实时细菌鉴定测定法铺平了道路。这种紧凑和低成本的技术可以使生物医学,临床诊断和环境应用受益。©2014光学仪器工程师协会(SPIE)[doi:10.1117/1.jbo.19.11.111610]
目标和意义:本项目旨在通过非侵入性现场技术开发方法、工具和协议,以改善电池诊断和预测。背景:电池诊断和预测是一项艰巨的任务。锂离子电池和钠离子电池比传统电池复杂得多,其退化具有路径依赖性,因为不同的用途(电流、温度、SOC范围、SOC窗口等)会导致不同类型的退化。此外,由于大型电池组由数千个电池组成,因此无法使用复杂模型或大量传感器。传统上,电池诊断通过两种相反的方法进行。学术路线旨在实现最大准确性,并通过投入大量资源来实现这一目标。第二种路线——通常在部署的系统上使用——使用尽可能少的资源,并且不能具有破坏性。因此,它无法有效预测真实的健康状况。这种对最新技术的评估促使 HNEI 定义并开发了第三条与行业兼容的中间路线,以经济高效且无损的方法实现准确诊断,仅使用电池组中已有的传感器,同时需要有限的计算能力。HNEI 开发了一个机械建模框架,其中电池数字孪生由单个电极数据构建,电池退化通过一个电极相对于另一个电极的缩放或平移来模拟。使用此框架,电压
抽象检索纳米级在纳米级的电阻图迅速通过无损的信号噪声比快速检查是一种未满足的需求,这可能会影响从生物医学到能量转化的各种应用。在这项研究中,我们开发了一种多模式功能成像仪器,其特征在于阻抗映射和相位定量,高空间分辨率和低时间噪声的双重能力。为了实现这一目标,我们推进了一个定量的相成像系统,称为Epi-Magnififer图像空间光谱显微镜结合了电动启动,以提供光路和电阻抗的互补图。我们用光路差和电阻抗变化的高分辨率图展示了我们的系统,这些图可以区分纳米化的,半透明的结构化涂层,涉及两种具有相对相似电性能的材料。我们绘制的异质界面对应于与钛(二氧化物)在玻璃支撑上沉积的钛(二氧化物)的过层中的直径较小的孔暴露的二锡氧化物层。我们表明,在宏观电极的相位成像期间的电气调制是决定性地检索具有亚微米空间分辨率的电阻抗分布,并且超出了基于电极的技术(表面或扫描技术)的局限性。发现,这些发现是通过理论模型证实的,该模型可以很好地拟合实验数据,从而可以通过高空间和时间分辨率实现电流图。新颖的光电化学方法的优点和局限性为测量本地电力场测量的更广泛的电气调制光学方法提供了基础。
定量打击乐诊断(QPD)是最近使用PerientoMeter®仪器(Curmetrics LLC,Los Angeles,CA)形成的最近开发的非破坏性测试(NDT)方法。这种测试方式已用于检测和定量分析整体迁移率以及细节缺陷的存在,例如与牙齿[1]和牙科植入物相关的裂纹[2,3]。QPD的有效性也已被证明可以检测到层压板结构中的弱“亲吻”键[4,5]。QPD测试系统由一个探针组成,该探针包含一个被启用的力传感器,该探针被启用以敲击规格。在探针对试样的打击乐后,杆中的压电传感器记录了力时间数据。这种相对较低的撞击会在标本中产生最大应力,而这种应力是无损的。在标本的特征上,每种打击乐的实力时间验证是在杆与试样接触的0.2 E 0.4 ms上记录的。与打击乐探针相连的计算机中的软件确定了每次进行测量时测量的力与10个打击乐器的时间返回到杆的机械能[4 E 6]。图1显示了当前QPD测试系统的示意图。归一化能量返回(NER),即将机械能返回到杆撞击前的杆的动能,作为QPD测试结果,将其绘制在撞击前的杆的动能。返回的机械能被定义为将力平方除以测量该力的打击乐杆中传感器的动态刚度。ner和时间可用于确定损失系数,一个阻尼参数,显示结构中的总能量耗散以及正常拟合误差(NFE),该参数表明裂纹的存在和严重程度和其他缺陷缺陷[1 E 4,6 E 9]。NER的较低振幅可以表明由于严重的缺陷或结构中有较高数量的特定缺陷(例如孔隙率)而导致结构的能量更多。
尽管现在对神经可塑性进行了广泛的研究,但曾经有一段时间成人可塑性与主流相反。基本的绊脚石源于Hubel和Wiesel的开创性实验,他们表达了令人信服的证据,表明在发育过程中存在一个关键时期的可塑性,此后大脑根据感觉输入的变化失去了变化的能力。尽管有时代精神说成熟的大脑相对不变,但科学文献中仍有许多成人神经可塑性的例子。有趣的是,这些研究中的一些涉及成年猫的视觉可塑性。甚至更早,有报道说,在背柱病变后,成年大鼠体感丘脑的功能重组,这是通过其他实验确认并扩展的。证明这些发现反映了不仅反应中心损伤,并且为了更好地控制感觉丧失的程度,使用了周围神经损伤,从而消除了使中心途径完好无损的同时消除上升的感觉信息。Merzenich,Kaas和同事使用外围神经过渡揭示灵长类动物体感皮层中明确的重组。此外,这些相同的研究人员表明,这种可塑性在不少于两个阶段进行,一个立即进行,另一种是长时间的。这些发现得到了确认并扩展到更膨胀的皮质剥夺,并进一步扩展到丘脑和脑干。在这里,我们概述了推动这种现象的启发式方法。然后,那里开始了一系列实验,以揭示允许这种可塑性的生理,形态和神经化学机制。最终,Mowery及其同事进行了一系列实验,这些实验仔细地跟踪了灵长类动物体感皮质中的几种谷氨酸(AMPA和NMDA)和GABA(GABAA和GABAB)受体复合物在外周植物损伤后几个时间点的表达水平。这些受体亚基映射实验表明,膜表达水平反映在关键时期发育的早期阶段所见的膜表达水平。这表明,在长时间的感觉剥夺条件下,成年细胞像塑性状态一样恢复到关键时期,即发育概括。
印度隐藏在加密图像(RDHEI)中的摘要可逆数据是一种将秘密信息嵌入加密图像中的技术。它允许提取秘密信息和无损解密以及原始图像的重建。本文提出了一种基于Shamir的秘密共享技术和多项目构建技术的RDHEI技术。我们的方法是让图像所有者通过对像素并构造多项式来隐藏多项式的系数中的像素值。然后,我们通过Shamir的秘密共享技术将秘密钥匙替换为多项式。它使Galois字段计算能够生成共享像素。最后,我们将共享像素分为8位,然后将它们分配给共享图像的像素。因此,嵌入式空间被腾空,生成的共享图像隐藏在秘密消息中。实验结果表明,我们的方法具有多个隐藏机制,并且每个共享图像具有固定的嵌入率,随着更多图像的共享,该机制不会降低。此外,与先前的方法相比,嵌入率得到提高。简介多媒体安全技术用于防止未经授权的用户复制,共享和修改媒体内容。为了防止此问题,加密和信息隐藏通常用于保护媒体内容。就信息隐藏技术而言,传统信息隐藏技术将破坏封面图像的内容。因此,这些图像是否可以完全恢复非常重要。但是,在某些例外情况下,例如军事,医疗和法律文档图像,图像的轻微失真是完全无法接受的。可逆数据隐藏方案(RDH)可以与无损的要求相对应。RDH方法应用了更改上下文的方法,以在封面媒体中隐藏秘密数据。数据提取后,不断变化的上下文将被充分回收到封面媒体。另一方面,RDHEI(隐藏在加密图像中的可逆数据)技术可以将加密技术与RDH技术相结合,RDH技术不仅可以在图像中隐藏秘密信息,而且还可以加密图像以保护图像内容。Visual密码学是一种加密技术,允许视觉信息(图片,文本等)要加密的方式使解密成为不需要计算机的机械操作。
(Am J Clin Oncol 2023; 00:000 - 000)B雨转移通常很难管理,通常会降低患者的生活质量,从而表现出迹象和症状,例如头痛,人格变化,记忆力,癫痫发作等。不同的治疗技术,例如全脑放射疗法,立体定向放射外科手术(SRS),伽马刀等。已用于治疗脑转移。目前,由于多叶胶胶的设计以及无需过滤器的光束(FFF)的发明,SRS被广泛用于治疗脑转移。1不幸的是,辐射坏死(RN)是该治疗技术的常见不良影响,因为将高剂量的辐射递送到一个分数或几个分数中。该技术被称为低分定位式放射疗法。2015年,Kohutek等人2报道说,使用SRS Technique在25.8%的治疗脑病变中观察到RN。Minniti等人3进行了一项研究,研究了SRS治疗后脑放射性症的风险,并显示24%的治疗病变发生了RN。诊断患有神经系统症状的患者通常接受诊断测试,包括磁共振成像(MRI)。4后续成像通常是为了监测放射疗法的治疗效果,以评估治疗反应,例如完全或部分反应,进行性疾病,稳定疾病等。不幸的是,由于血脑屏障的破坏,RN和肿瘤的过程在常规MRI序列上看起来相似。5因此,对于临床医生和放射科医生来说,至关重要的任务是将RN和肿瘤复发与这些MRI图像区分的能力。最近,放射素学已用于医学中,包括放射疗法,以预测或评估治疗结果。不同的研究已经使用放射线学进行了分析和评估后续图像。6 - 8在该领域,MRI起着至关重要的作用,因为MR图像能够产生有关大脑和其他颅骨结构的卓越解剖信息,这些信息比其他成像方法更清晰,更详细。此外,MRI是一种无创和无损的方法,可反复检查肿瘤以评估对治疗的反应,因此可以将其整合到治疗策略中。6放射素学是一种从医学图像中提取可最小数据的方法,并在肿瘤学中广泛使用。从MR成像中提取这些数据并将其与潜在的组织动态联系起来具有扩大癌症成像研究范围的巨大潜力。此外,放射线学是一种无创方法,可提供无限信息,可用于癌症检测,预后确认,对治疗的反应前词和疾病监测
焊接对薄硅太阳能电池造成的损坏以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺,导致硅片和电池厚度不断减小。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在焊接过程中断裂,或者由于焊接过程中的损坏而导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了对模块中破裂的电池进行成像,提供快速且无损的反馈。有限元建模用于解释为什么与背面相比,在模块的玻璃侧加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。将电线焊接到电池上是较薄电池更具挑战性的步骤之一。电池可能在此过程中破裂,或者由于在此过程中造成的损坏导致模块随后破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于工艺和材料优化的工具,并正在开发模块级裂纹检测的改进方法。