阿贡国家实验室的 APS 是美国 DOE-SC-BES 科学用户设施。APS 的核心使命是为多方面的科学界提供服务,提供高能 X 射线科学工具和技术,使用户能够解决我们国家面临的最重要的基础和应用研究挑战,同时保持安全、多样化和对环境负责的工作场所。APS 经过优化,可提供美国最高亮度的硬 X 射线(即光子能量高于 20 keV)。这使得它非常适合在原位或操作环境下探索时间相关结构、元素分布以及化学、磁性和电子状态,以解决材料科学和凝聚态物理、化学以及生命和环境科学中的大量前沿问题。
Gottesman-Knill定理指出,可以在经典的调查器上进行稳定状态和Pauli测量的稳定态的动力学。该算法可以以多种方式扩展到任意状态和单位,而运行时的成本增加。此运行时可以看作是实现量子电路所需的非稳定器资源的定量。此外,由于非稳定器元素对于通用量子计算是必需的,因此运行时提供了一种测量计算的“非经典性”的方法。这在量子计算的魔术状态模型中特别明显,其中唯一的非稳定器元素由魔术状态给出。因此,在魔术资源理论中,资源是通过魔术单调量来衡量的,魔术单调与经典仿真算法的运行时间相关。
图3。DP-V-4通过H1299细胞中的泛素 - 蛋白酶体系统以剂量和时间依赖性的方式同时降解EGFR和PARP。A:添加MP-GV后36小时的相关蛋白质变化。b:添加MP-oV后36小时相关蛋白的变化。c:三种双protac化合物(DP-V 1-3)对36小时后相关蛋白的影响。 D:DP-V-4对36小时时浓度不同的相关蛋白质的影响。 E:4μMDP-V-4对不同时间相关蛋白的影响。f:引入1 µM MG132后,DP-V-4对相关蛋白的影响。g:通过CCK8测定法鉴定出吉非替尼,olaparib和DP-V-4的抗增殖活性。IC50表示为平均值±SD。
维护、发展和改进时间单位、频率单位和基于这些标准的时间尺度的国家标准;在对进一步根本性改进频率标准及其应用具有重要意义的领域开展研究,重点是微波和激光设备、原子和分子共振以及基本物理现象和常数的测量;使时间和频率标准装置和概念适应特殊的科学和技术需求;开发射频、微波、红外和可见光辐射领域的时间和频率测量方法;协调国家标准时间尺度与国际时间尺度和美国海军天文台维护的时间尺度;与国家和国际组织合作,开发测量时间相关量的方法;运营时间和频率传播服务,如广播电台和广播,以实现对国家时间和频率标准的可追溯性。
我们通过实验评估了具有固定频率和固定相互作用的 transmon 量子比特对于实现自旋系统模拟量子模拟的适用性。我们使用全量子过程断层扫描和更高效的哈密顿量断层扫描在商用量子处理器上测试了实现此目标的一组必要标准。低振幅下的显著单量子比特误差被确定为阻碍在当前可用设备上实现模拟模拟的限制因素。此外,在没有驱动脉冲的情况下,我们还发现了伪动态,我们将其与量子比特和低维环境之间的相干耦合联系起来。通过适度的改进,对丰富的时间相关多体自旋哈密顿量家族进行模拟模拟可能是可能的。
摘要 我们介绍了一种基于量子虚时间演化 (QITE) 有效解决 MaxCut 问题的方法。我们采用线性 Ansatz 进行幺正更新和不涉及纠缠的初始状态,以及在给定图和切除两个边的子图之间插值的虚时间相关哈密顿量。我们将该方法应用于数千个随机选择的图,最多有 50 个顶点。我们表明,对于所有考虑的图,我们的算法表现出 93% 及以上的性能,可以收敛到 MaxCut 问题的最大解。我们的结果与贪婪算法和 Goemans-Williamson 算法等经典算法的性能相比毫不逊色。我们还讨论了 QITE 算法的最终状态与基态的重叠作为性能指标,这是其他经典算法所不具备的量子特征。
我们提出了一个面向对象的开源框架,用于解决用 Python 编写的开放量子系统的动力学问题。任意的汉密尔顿量(包括时间相关系统)都可以从量子对象类定义的运算符和状态构建,然后传递给主方程或蒙特卡罗求解器。在详细介绍开放系统动力学的数值模拟之前,我们概述了框架的基本结构。给出了几个示例来说明完整计算的构建过程。最后,我们根据当前实现的性能来衡量我们的库的性能。这里描述的框架特别适合量子光学、超导电路器件、纳米力学和捕获离子等领域,同时也非常适合用于课堂教学。
维护、发展和改进时间单位、频率单位和基于这些标准的时间尺度的国家标准;在对进一步根本性改进频率标准及其应用具有重要意义的领域开展研究,重点是微波和激光设备、原子和分子共振以及基本物理现象和常数的测量;使时间和频率标准装置和概念适应特殊的科学和技术需求;开发射频、微波、红外和可见光辐射领域的时间和频率测量方法;协调国家标准时间尺度与国际时间尺度和美国海军天文台维护的时间尺度;与国家和国际组织合作,开发测量时间相关量的方法;运营时间和频率传播服务,如广播电台和广播,以实现对国家时间和频率标准的可追溯性。
维护、发展和改进时间单位、频率单位和基于这些标准的时间尺度的国家标准;在对进一步根本性改进频率标准及其应用具有重要意义的领域开展研究,重点是微波和激光设备、原子和分子共振以及基本物理现象和常数的测量;使时间和频率标准装置和概念适应特殊的科学和技术需求;开发射频、微波、红外和可见光辐射领域的时间和频率测量方法;协调国家标准时间尺度与国际时间尺度和美国海军天文台维护的时间尺度;与国家和国际组织合作,开发测量时间相关量的方法;运营时间和频率传播服务,如广播电台和广播,以实现对国家时间和频率标准的可追溯性。
相干态是一个重要的概念,其特征值关系为 ˆ a | α = α | α as,是研究和描述辐射场的一个非常方便的基础,它是由薛定谔于 1926 年在对量子谐振子的研究 1 – 4 中首次提出的。然而,基于相干态和光电检测的量子相干理论已由 Glauber、Wolf、Sudarshan、Mandel、Klauder 等人在 20 世纪 60 年代初发展起来,它与经典辐射场中的量子态最为相似,因此被认为是经典力学和量子力学的边界。Glauber 的创新工作于 2005 年获得诺贝尔奖,以表彰他。事实上,相干态已经成为量子物理学中最常用的工具之一,在各个领域,特别是在量子光学和量子信息中发挥着非常重要的作用。相干态使我们能够使用 Wigner 等人早期开发的准概率来描述光在相空间中的行为 7 。相干态的重要性在于它们的概括已被证明能够呈现非经典辐射场特性 8 – 10 。激光作为一种极具潜力的相干光的表现标志着对光与物质之间非线性相互作用的广泛研究的开始 11 。这可以通过实验通过将相干态穿过克尔介质来实现,这是由于出现了可识别的宏观相干态叠加,即所谓的猫态 12 。当克尔介质的入口状态是正则相干态时,Kitagawa 和 Yamamoto 引入了克尔态作为克尔介质的输出 13 。克尔效应会产生正交压缩,但不会改变输入场光子统计特性,即它仍然是泊松分布,这是正则相干态输入的特性,用于产生相干态的叠加 14 – 16 。这里值得注意的是,光在克尔介质中的扩散也以非谐振荡器样本为特征,非谐项取为 ˆ np ,其中 p 为整数(p > 1)17 , 18 。该振荡器模式可以被评估为描述注入具有非线性磁化率的传输线(例如光纤)的相干态的演变。用相干态的量子力学描述的激光束在通过非线性介质时会经历各种复杂的改变,包括量子态的崩溃和复活。在任何线性或非线性的演变中,耗散总是会发生。耗散效应通常导致振幅的减小,但是,如果相互作用发生在原子尺度上,量子效应就会很显著 19。非线性相干态是标准相干态最突出的概括之一 20 。一个合适的问题是:如果初始相干态的时间演化受到时间相关谐振子哈密顿量的影响,并与时间相关外部附加势 21 – 24 耦合,会发生什么情况?时间相关谐振子有很多种,例如参数振荡器 11、25 、卡尔迪罗拉-卡奈振荡器 26、27 和具有强脉动质量的谐振子 28 。