本研究引入了用于热化学储能的反应性碳酸盐复合材料 (RCC) 的新概念,其中 BaCO 3 -BaSiO 3 混合物可成功实现 BaCO 3 的热力学不稳定,并具有中等循环稳定性 ~ 60 %,接近考虑非反应性杂质时的理论最大值。本研究提出了一种替代熔盐储能技术,该技术可在更高温度 (850 °C) 下运行,因此可在具有竞争力的价格水平下保持更高的卡诺效率,从而能够开发出比最先进技术更有利的热能存储系统。最后,在 RCC 中添加催化量的 CaCO 3 可显著改善反应动力学(一个数量级),这是通过形成中间体 Ba 2- x Ca x SiO 4 化合物实现的,据推测,这些化合物可通过诱导晶体缺陷促进 Ba 2+ 和 O 2- 的迁移。
已知块状炸药的微观结构细节(例如颗粒大小、粒间空隙体积和粒内晶体缺陷)对 HMX 基炸药的冲击起爆有显著影响。在事故情况下,通过机械或热损伤进行非冲击起爆的可能性更大。已知微观结构效应也会影响非冲击起爆。因此,微观技术用于探测由此类损伤导致的微观结构变化,以便更好地理解导致起爆的现象,并有朝一日用计算机模型模拟这些现象。在本研究中,HMX 和 PBX 9501 样品在环境压力下通过暴露于火焰进行热损伤。燃烧自持后,样品用加压空气淬火。用偏光显微镜 (PLM) 检查试验后残留物的横截面,用扫描电子显微镜 (SEM) 检查其平面图。将所得结构与机械损坏的 PBX 9501 中的结构进行比较。此外,经弹丸撞击损坏的 PBX 9501 显示出与隔热样品相似的特征。例如,有迹象表明局部相变为 delta 相 HMX。
从基本的角度和这些材料的实际应用,了解II型超级导管中涡流的动力学至关重要[1-6]。在II型超导体中,当我们应用大于临界场h C 1大的磁场时,量化通量线(涡旋)会穿透样品。在干净的超导体中,涡流之间的相互作用将它们排列在三角形晶格中,称为Abrikosov [7]涡旋晶格(VL)。ever,固体中不可避免地存在晶体缺陷作为涡旋的随机固定潜力。If these vortices are made to oscillate under the influence of an oscillatory cur- rent or magnetic field, their motion is governed by the follow- ing competing forces [ 8 ]: (a) Lorentz force due to the external current density driving the motion, (b) restoring force due to the combined effect of pinning by crystalline defects and repulsion from neighbouring vortices, and (c) the dissipative viscous drag of the vortices.此外,在有限温度下,热激活会导致涡流自发
摘要。在这项研究中,使用直接的微波辅助技术合成氧化锌纳米颗粒。结果表明,合成的纳米颗粒是六边形的wurtzite Zno纳米颗粒,其结晶石尺寸为6.76 nm,如通过生理化学方法确定。它揭示了在不同的增强型,是不规则的,球形的海绵状结构。使用傅立叶变换红外光谱法,已经观察到ZnO表面上的相应官能团。根据吸收测量值,直接光带隙约为3.29 eV。光致发光光谱可通过寻找红色发射和蓝色带缘发射来检测ZnO晶格中的晶体缺陷。进行了对氧化锌纳米颗粒的抗腐蚀能力的研究,该研究表明,当用镁(MG)底物涂有颗粒时,颗粒具有有益的特征。这些材料被评估,具有有或没有保护性涂层的腐蚀性。结果表明,在不同的电解质条件下,涂层显着提高了保护速率。与裸露的MG板相比,当ZnO纳米颗粒涂覆时,电荷转移电阻R CT增加。
此技术论文描述了锁定放大器的最多用途之一,即四点AC固定测量(也称为四端或四线)。材料或设备的电阻(或者通过样品几何形状进行正常的电阻率)是一种基本特性,可用于理解Maperial的电子行为,无论是从物理,材料科学的角度还是电气工程的角度来看[1-3]。的确,它是我们小组中最早的测量之一,以了解新合成的导电材料。例如,金属的电阻率将随温度降低而降低,而随着电荷载体“冻结”,半导体或绝缘体的电阻率将增加。为了进一步量化金属的质量,可以通过测量室温下的电阻比除以低温下的电阻(4 K)来隔离杂质和晶体缺陷的影响。这是所谓的残余电阻率或RRR。完美的金属晶体将在零温度(无限RRR)下具有零分解性,而杂质会导致耐药性饱和至有限的值(较小的RRR)。纵向抗性当然是识别超导性的关键措施[4,5]。电阻率测量的其他用途包括识别
· Athmane Bakhta、Virginie Ehrlacher,《具有非零通量和移动边界条件的交叉扩散系统》,已接受在 ESAIM:M2AN 上发表。 · Virginie Ehrlacher 和 Damiano Lombardi,《用于解决 Vlasov-Poisson 系统的动态自适应张量方法》,《计算物理杂志》,339,2017 年,第 285-306 页。 · Virginie Ehrlacher、Christoph Ortner 和 Alexander V. Shapeev,《晶体缺陷原子模拟的边界条件分析》,ARMA,222(3),2016 年,第 1217-1268 页。 · Eric Cancès、Virginie Ehrlacher、Frédéric Legoll 和 Benjamin Stamm,近似椭圆方程均匀系数的嵌入式校正器问题,Comptes-Rendus Mathématiques,353(9),2015,第 801-806 页。 · Eric Cancès、Virginie Ehrlacher 和 Tony Lelièvre,高维特征值问题的贪心算法,构造逼近,40,2014 年,第 387-423 页。 · Eric Cancès、Virginie Ehrlacher 和 Yvon Maday,《自伴特征值问题的非一致近似:应用于超胞方法》,《Numerische Mathematik》,128,2014 年,第 663-706 页。
摘要:已经进行了开放式Z扫描测量,以分别研究800 nm和1030 nm波长的三个光子(3 pa)和四光子吸收(4 PA)系数,并在一致和stoichiomempricmetricmempric niobate中(CLN,SLN,SLN),与不同的Concen-Concen-concen-concen-trations一起使用。两个波长的激光脉冲持续时间为40 fs和190 fs。晶体内部的峰强度在约110至550 GW/cm 2之间变化。使用理论模型评估了3 PA和4 PA系数,结果表明它们的最小值位于MG掺杂水平或周围,与抑制CLN和SLN的光差异相对应。此结果可以归因于晶体缺陷对3 PA和4 PA过程的贡献。此外,在1030 nm处的4 pa在相同的强度水平下在800 nm处表现出比3 pa更大的非线性吸收。讨论了这种意外行为的可能原因。总体而言,比较这些晶体的3 pa和4 pA值将使选择LN晶体的最佳组成,以进行有效的THZ产生以及其他需要高泵强度的非线性光学过程。
氢是绝缘子中的大量杂质,可以在半导体行业的生长和各种处理步骤中轻松引入。通过与不同的晶体缺陷反应,H可以钝化它们或形成新型的Elective elective Himctive H活性相关的复合物。[1,2]这些缺陷可能明显影响了微电子设备的电性能,对它们的控制是现代微电子的重要任务。在文献中,致力于研究h h h中与H相关缺陷的电和光学特性的研究相对较少。根据理论,孤立的间质h充当两性杂质,也可能是绝缘子中负电荷的来源。[3 - 5]通过使用第一个原理总计计算,kilic和Zunger [3]降低了间隙H应该根据Fermi水平在绝缘子带中的位置引入浅或深度状态。作者通过暗示存在H的过渡水平(þ /)的存在,应位于真空水平以下约3.0 0.4 eV。该级别的位置定义了绝缘子中孤立H的电荷状态。h应该是负(积极的)。浅氢状态也可以出现在绝缘体的带隙中。过渡级别的存在
Igor Aharonovich 是一位屡获殊荣的科学家,致力于研究能够生成、编码和分发量子信息的量子源的前沿研究。作为 UTS 数学和物理科学学院的教授,Igor 研究固体中的光学活性缺陷,旨在识别新一代超亮固态量子发射器。他对该领域的贡献包括发现金刚石和六方氮化硼中的新色心,以及开发利用这些材料设计纳米光子器件的新方法。他是 ARC 变革性超光学材料 (TMOS) 卓越中心的首席研究员,并领导一项国际合作,研究纳米材料六方氮化硼 (hBN) 中晶体缺陷或缺陷的化学结构。 2013 年,他在 UTS 成立了纳米光子学研究小组,2015 年晋升为副教授,2018 年晋升为正教授。他的研究小组探索宽带隙材料中的新量子发射器,旨在在单个芯片上制造量子纳米光子器件,用于下一代量子计算、密码学和生物传感。2016 年,Igor 和他的团队发现了第一个基于 hBN 缺陷的 2D 材料中的量子发射器,它们在室温下工作。他合著了 200 多篇同行评审的出版物,其中包括一篇被引用次数最多的关于金刚石光子学的评论。他还为固体纳米光子学撰写了路线图
AlGaN/GaN 高电子迁移率晶体管 (HEMT) 结构具有出色的电气和材料特性,使其成为制造高性能紫外光电探测器 (UV PD) 的理想选择,尤其是使用金属-半导体-金属 (MSM) 配置时。然而,MSM 设计的金属布局和多堆栈 HEMT 中的晶体缺陷会降低光电流并降低器件性能。具有不同纳米特征的 AlGaN/GaN 表面纳米结构化是一种很有前途的方法,可以提高光吸收效率并增加器件响应。在这项工作中,我们展示了通过使用周期性纳米孔阵列设计表面来增强性能参数的 AlGaN/GaN HEMT MSM 紫外光电探测器。光学模拟用于优化纳米孔周期性和深度的设计。我们制造了具有不同纳米孔深度的无图案化和纳米孔图案化器件,并且随着纳米孔的加入,它们的性能得到了显着增强。具有 40 nm 深纳米孔和 230 nm 阵列周期的器件在光电流 (0.15 mA)、响应度 (1.4 × 10 5 AW − 1 )、紫外/可见光抑制比 (≈ 10 3 ) 和比探测率 (4.9 × 10 14 Jones) 方面表现出最高的性能。这些发现提出了一种与 HEMT 兼容的策略来增强紫外光电探测器在电力光电应用中的性能,突出表明纳米孔图案化对于紫外光电检测技术的进步具有良好的前景。