摘要:研制了一种基于硅芯片的双层三维螺线管电磁动能收集器,可高效将低频(<100 Hz)振动能转化为电能。利用晶圆级微机电系统 (MEMS) 制造形成金属铸造模具,然后采用随后的铸造技术将熔融的 ZnAl 合金快速(几分钟内)填充到预先微加工的硅模中,在硅片中制作 300 匝螺线管线圈(内螺线管或外螺线管均为 150 匝),以便锯切成芯片。将圆柱形永磁体插入预蚀刻的通道中,以便在外部振动时滑动,该通道被螺线管包围。收集器芯片的尺寸小至 10.58 mm × 2.06 mm × 2.55 mm。螺线管的内阻约为 17.9 Ω。测得的最大峰峰值电压和平均功率输出分别为 120.4 mV 和 43.7 µ W 。电磁能量收集器的功率密度有很大的提高,为 786 µ W/cm 3 ,归一化功率密度为 98.3 µ W/cm 3 /g 。实验验证了电磁能量收集器能够通过步行、跑步和跳跃等各种人体运动来发电。晶圆级制造的芯片式螺线管电磁收集器在性能均匀、尺寸小和体积大的应用方面具有优势。
* 通讯作者:nima.gorji@tudublin.ie 摘要 — X 射线衍射 (XRD) 映射是一种非破坏性计量技术,可以重建通过热机械应力在硅晶片上引起的翘曲。在这里,我们使用一种基于在 x 和 y 方向以及对同一样品进行不同 90 度旋转的一系列线扫描的方法来映射晶片的翘曲。这些线扫描从晶片表面收集摇摆曲线,记录由于表面取向错误而偏离布拉格角的衍射角 (ω)。表面翘曲通过引起测量的衍射角和参考布拉格角 (ω − ω0) 之间的差异和摇摆曲线增宽 (FWHM) 反映在 XRD 测量中。通过收集和整合整个表面和晶圆多次旋转的摇摆曲线 (RC) 和 FWHM 加宽,我们可以生成表面函数 f(x) 和角度错位 (翘曲) 的 3D 图。翘曲呈现凸形,与文献中报道的光学轮廓测量一致。基于实验室的 XRDI 有可能在更短的时间内原位绘制晶圆的翘曲图,就像在同步辐射源中完美执行一样。关键词:计量学、硅、翘曲、X 射线衍射、晶圆。I.介绍
1 新加坡南洋理工大学电气与电子工程学院,邮编 639798 2 巴黎第七大学材料与量子现象实验室,邮编 F-75025,巴黎,法国 3 新加坡科技研究局微电子研究所,邮编 117685 我们报告采用标准 CMOS 兼容后端工艺在 12 英寸玻璃基板上大规模制造功能完备的射频 (RF) 表面离子阱。采用成熟的 12 英寸铸造后端工艺(电镀铜和金饰面)直接在玻璃晶片基板上制造表面电极。我们通过用激光冷却的 88 Sr + 离子加载离子阱来测试它。该离子阱在 33 MHz 频率下 RF 幅度在 100 – 230 V 范围内时表现出稳定的操作。当真空室压力为 5 × 10 -11 mbar 时,离子寿命约为 30 分钟,这展现出在 CMOS 兼容且具有成本效益的平台上采用标准代工工艺实现量子计算系统未来的巨大潜力。
摘要:我们致力于将 CZ 晶片转移到具有多孔分离层的可重复使用衬底上的外延生长 Si 和 Ge 晶片(“无切口晶片”),以减少材料和能源消耗。我们报告了将无切口晶片方法应用于 Si 和 Ge 晶片的进展。对于 Si,多年来,我们在自制的 CVD 反应器(“RTCVD”)中开发模板和外延生长晶片(SiEpiWafers),现在使用新的微电子 CVD 反应器(“PEpi”)将它们的质量提升到一个新的水平,这使我们能够生长具有可调厚度和掺杂水平(n 型和 p 型)的 6 英寸和 156x156 mm²(M0)外延 Si 晶片。在第一次测试运行中,我们实现了高达 840 µs 的生长寿命和约 10% 的总厚度变化。对于 Ge,我们成功开发并理解了多孔层堆栈,从而获得了 4 英寸可拆卸 Ge 模板,用于未来的 Ge 或 III-V 外延生长。
该项目的目的是通过利用在要模拟的过程步骤中测量所涉及的材料的固有应力来获得变形晶片的图形表示。通过应力,可以通过对扁平晶片的一系列特征进行评估,可以直接获得变形,而无需考虑导致几何形状修饰的热预算或步骤。在一个阶段进行模拟整个晶圆仍然需要无法实现的计算能力,因此有必要将模拟分为3个主要步骤:
摘要 - 在这项研究中,提出了六边模制面板级芯片尺度套件(PLCSP)的设计,材料,过程,组装和可靠性。重点放在PLCSP的重新分布层(RDL)上的制造,并在具有多个设备晶圆的大型临时面板上。因为所有打印的电路板(PCB)面板均处于矩形形状,因此某些设备的晶片将其切成两个或更多件,以便将面板充分利用。因此,它是非常高的吞吐量。因为所有过程/设备都是PCB流程/设备(而不是半导体过程/设备),所以这是一个非常低成本的过程。在RDL的工厂后,PCB面板中的晶片被脱落。随后是焊球安装并制造了带有RDL的原始设备晶片的六边模制PLCSP。介绍了滴测试和包括PLCSP的失败分析的结果。通过非线性温度和时间依赖的有限元模拟进行六面模制PLCSP PCB组件的热循环。
使用基于线性的频道和基于规则的算法的硅晶片制造中的表面缺陷分类,在硅晶片制造中,在硅晶片制造中使用基于线性的信道和基于基于规则的固定算法的硅晶片制造中的基于线性的基于线性的频道渠道晶体轴向循环和基于规则的基于基于规则的灯泡的局限性的线化算法在硅晶片制造中使用基于线性的旋转算法进行了表面缺陷分类,并 Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the Linear-Based Channeling and Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the Linear-Based Channeling and Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the Linear-Based Channeling and Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the基于线性的渠道和基于规则的包裹算法,使用基于线性的渠道和基于规则的双钉算法在硅晶片制造中进行表面缺陷分类,并使用基于线性的信中的硅晶状体和基于规则的基于基于线性的基于线性的基于硅的渠道临床构造的硅化算法分类的硅晶片制造中的硅晶片制造中的表面缺陷分类,并使用基于线性的渠道和基于规则的算法的晶圆制造,使用基于线性的渠道和基于规则的binning算法使用基于线性的频道和基于规则的算法的硅晶片制造中的表面缺陷分类,在硅晶片制造中,在硅晶片制造中使用基于线性的信道和基于基于规则的固定算法的硅晶片制造中的基于线性的基于线性的频道渠道晶体轴向循环和基于规则的基于基于规则的灯泡的局限性的线化算法在硅晶片制造中使用基于线性的旋转算法进行了表面缺陷分类,并 Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the Linear-Based Channeling and Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the Linear-Based Channeling and Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the Linear-Based Channeling and Rule-Based Binning Algorithms Surface Defect Classification in Silicon Wafer Manufacturing Using the基于线性的渠道和基于规则的包裹算法,使用基于线性的渠道和基于规则的双钉算法在硅晶片制造中进行表面缺陷分类,并使用基于线性的信中的硅晶状体和基于规则的基于基于线性的基于线性的基于硅的渠道临床构造的硅化算法分类的硅晶片制造中的硅晶片制造中的表面缺陷分类,并使用基于线性的渠道和基于规则的算法的晶圆制造,使用基于线性的渠道和基于规则的binning算法
基于GE的集成光子回路过去10年中,基于锗(Ge)的光电元件得到了发展,拓展了硅(Si)光子回路的潜力。光电探测器、调制器和Ge-on-Si激光器已经在中红外区得到演示。Ge的主要优势在于它的透明窗口大,波长范围从1.8至14μm,并且与CMOS兼容。Ge和SiGe合金很快被视为开发集成光子元件的首选材料。厚Ge和SiGe层(高达40%的Ge)通常在工业外延集群工具中通过化学气相沉积在200mm和300mm Si(001)晶片上生长。关于Ge和SiGe生长的更多细节可以在参考文献[1]中找到。 SiGe 或绝缘体上的 Ge(如 SiN)晶片可从之前的外延中制造出来。在这种情况下,需要将两个晶片键合在一起:第一个晶片具有 Ge 或 SiGe 外延层,上面覆盖有 SiNx 层和薄 SiO 2 层,第二个晶片是氧化 Si 晶片。在 SiO 2 到 SiO 2 键合之后,起始
在电子设备结构中引入层状二维 (2D) 材料是提升电子设备性能和提供附加功能的一种有趣策略。例如,石墨烯(导电性)已用作电容器 [ 1 ] 和电池 [ 2 ] 中的电极,而过渡金属二硫属化物 (TMD),例如 MoS 2 、 WS 2 和 WSe 2(半导体性),常用作场效应晶体管 (FET) 和光电探测器 [ 3 – 5 ] 中的沟道。六方氮化硼 (h-BN) 是由 B 和 N 原子排列成 sp 2 六方晶格的二维层状材料,其带隙为 5.9 eV [ 6 ]。因此,h-BN 是一种电绝缘体,并且在许多不同的应用中非常有用。到目前为止,h-BN 已被证明是一种非常可靠的 FET 栅极电介质,并且能够比高 k 电介质更好地抵抗电应力 [7,8],因为