稀有同位素梁(FRIB)的设施资源是科学用户设施的DOE办公室,根据奖励编号DE-SC0000661。这项工作得到了NSF PHY-11102511(NSCL),NSF PHY-103519(职业),NSF 1430152(Jina-Cee)(Jina-Cee),NNSA奖。
即使实验被冷却至宇宙中最低的温度(约10 mk),并且使用Josephson参数放大器(JPA)来最大程度地减少噪声,但它们引入了基本噪声(SQL,标准量子量极限噪声)
https://news.fnal.gov/2019/11/admx- perveriment-plass-places-worlds-best-best-best--ondaind-on-dark-matter-axions/https://news.fnal.gov/2019/11/admx- perveriment-plass-places-worlds-best-best-best--ondaind-on-dark-matter-axions/
摘要:非弹性(或伪dirac)暗物质的模型通常假设左手和右手质量项之间的交易对称性,以抑制对角线耦合。我们指出,这种对称性是不必要的,因为对于Majorana fermions,对角耦合并不受到严格的约束。消除这种临时对称性的需求而不是由于额外的歼灭模式而放松遗物密度约束。我们考虑了一个简单的UV-Complete模型,该模型从(在)直接检测,梁转储实验和碰撞器中实现了这种设置并研究了约束。我们分别在几百个MEV和几个GEV附近确定了两个可行的质量区域。前一个区域将通过NA64和Belle II数据进行近未预测的分析进行充分测试,而后者也是挑战,即使在未来的实验中也是如此。
•探索LTS磁铁的性能限制,重点是强大的大规模实现•探索超出NB 3 SN限制的HTS磁铁技术,用于加速器应用•开发下一代的加速器磁铁,用于未来的colliders
检测比MEV更重的轴线暗物质受到其小波长的阻碍,这限制了传统实验的有用体积。可以通过直接检测中等激发来避免此问题,后者的〜MEV - EV能量与检测器的大小是解耦的。我们表明,对于磁场内的任何目标,电磁轴轴的吸收率由介电函数确定。结果,可以将以前用于子GEV暗物质搜索的候选目标重新定义为宽带轴测检测器。我们发现,具有与最近测量值相当的噪声水平的kg yr暴露足以探测实验室测试目前未探索的参数空间。降低噪声仅减少几个数量级,才能对〜10 MeV - 10 eV质量范围内的QCD轴敏感。
摘要我们考虑了浸入完美流体暗物质(PFDM)的黑洞背景中的标量扰动。我们通过使用第六阶温策尔 - 克莱默 - 布里林(WKB)近似,最长的模式是那些比临界值小于临界值的角度质量较高的质量质量的模式,被称为临界模式的异常衰减速率,而超出了相反的临界值。此外,我们表明,对于pfdm强度参数k的不同值k,可以恢复准频率(QNF)的实际部分(QNF),QNF的虚部以及Schwarzschild背景的临界标量场的质量。对于小于这些值的k值,上述量大于Schwarzschild的背景。然而,除了这些k的这些值之外,这些数量还小于Schwarzschild后台。
超脑机械传感器为测试新物理学提供了令人兴奋的途径。虽然这些传感器中的许多是为检测惯性力而定制的,但磁悬浮(Maglev)系统特别有趣,因为它们对电磁力也敏感。在这项工作中,我们建议使用磁性悬浮的超导体通过其与电磁作用的耦合来检测暗光子和轴突暗物质。几个现有的实验室实验以高频搜索这些黑暗象征的候选者,但很少有人对低于1 kHz的频率敏感(对应于深色 - 物质M dm m dm≲10-12ev)。作为机械谐振器,磁性悬浮的超导体对较低的频率敏感,因此实验室实验目前无法探索的探针参数空间也可以。暗光子和轴线暗物质可以采用振荡的磁场,该磁场驱动磁性悬浮的超导体的运动。当暗物质康普顿频率与悬浮的超导体的捕获频率匹配时,这种运动会得到共鸣。我们概述了对暗物质敏感的磁性超导体的必要模块,包括宽带和共振方案的规格。我们表明,在Hz≲f dm≲kHz频率范围内,我们的技术可以在深色photon和Axion Dark Matter的实验室探针中达到领先的灵敏度。