深色光子,可以在陆地低背景实验(即中微子实验)中看到它们。使用暗物质[3-5]或其他天体物理学来源的其他衰减/歼灭产物进行了类似的分析[6]。这种情况使我们能够探索夫妇到深色光子的低质量暗物质(DM)的信号。直到近年来,这种低质量DM的直接检测实验相对不受限制。缺乏的低质量DM呈现是沉积的后坐力与DM质量成正比,通常低于检测器阈值小于少数GEV的质量。虽然近年来低阈值检测器技术已取得了进步,但新的策略和材料在限制低质量DM方面具有很大的希望[7-38]。本文的布局如下:在秒中。ii,我们将根据歼灭和相应的深色光子通量来讨论χ在银河系中的分布。sec。 iii我们描述了深色光子与物质的相互作用,特别是,实验的光学特性如何增强或抑制深色光子的吸收。 sec。 iv我们显示了现有实验和预计实验的结果。 第五节涵盖了此模型的现有限制,而秒。 vi讨论了腐烂的暗物质引起的类似信号。sec。iii我们描述了深色光子与物质的相互作用,特别是,实验的光学特性如何增强或抑制深色光子的吸收。sec。 iv我们显示了现有实验和预计实验的结果。 第五节涵盖了此模型的现有限制,而秒。 vi讨论了腐烂的暗物质引起的类似信号。sec。iv我们显示了现有实验和预计实验的结果。第五节涵盖了此模型的现有限制,而秒。vi讨论了腐烂的暗物质引起的类似信号。
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
在宇宙的所有天体物理和宇宙学尺度上都可以找到非重子暗物质存在的证据。根据对宇宙微波背景辐射的观测,暗物质对宇宙总能量的贡献估计为 27%。解决暗物质之谜的一类通用粒子被称为弱相互作用大质量粒子 (WIMP),其质量在 GeV-TeV 范围内,与普通物质的预期相互作用率为弱尺度相互作用量级。EDELWEISS-III 实验的目的是利用锗辐射热计探测银河系暗物质晕中 WIMP 的弹性散射。在 ≈ 18 mK 的低温下,WIMP 引起的核反冲产生的预期 O (keV) 能量沉积会产生可测量的热量和电离信号。这种直接检测实验的主要挑战是 WIMP-核子散射的预期速率较低,最新结果限制了该速率低于每 100 千克每年几次。因此,多层外部屏蔽可保护实验免受环境放射性的影响。通过使用基于反冲类型的粒子识别,可以排除来自屏蔽内元素放射性的其余背景。最成问题的背景来自中子,它引起的核反冲与探测器中的 WIMP 信号无法区分。具体来说,中子是由宇宙射线μ子及其簇射产生的。因此,实验位于莫达内地下实验室,那里 4800 米的岩石使宇宙μ子通量衰减 10 6 倍,降至 5 µ /m 2 /天。其余的μ子使用围绕实验的主动µ否决系统进行标记,该系统由 46 个塑料闪烁体模块组成。
异国情调的自由度,例如超子,暗物质和脱糊状的夸克物质,在紧凑型物体(如中子恒星)的理论模型中引起了显着的关注,如中子恒星,这些恒星具有极高的密集核心。我们的目标是在高密度环境中探索这些颗粒的形成,同时保持中子恒星的稳定性并满足中子恒星的观察性约束。我们采用相对论密度的功能方法,用于辐射阶段,并结合了超子和玻色子暗物质,通过相过渡到非本地nambu - jona-lasinio模型与颜色超导性描述。我们评估了模型与观察数据的兼容性,并使用贝叶斯分析来限制其参数。
Davis, Emily 腔介导的与固态自旋集合的相互作用,用于增强暗物质纠缠检测 NYU New York City NY 10012-2331
我们建议使用基于光纤的干涉仪搜索标量超轻暗物质(UDM),其颗粒质量在10 - 17-17-10-10 - 13-11 eV = C2ð10-3-3 - 10 Hz。由固体芯和空心芯纤维组成,该提出的检测器将对纤维折射率的相对振荡敏感,这是由于标量UDM诱导的调节型在细胞结构常数α中的调制。我们预测,通过实施检测器阵列或低温冷却,提出的基于光纤的标量UDM搜索有可能达到参数空间的新区域。这种搜索特别适合探测暗物质的太阳光晕,其灵敏度超过了先前的暗物质搜索在粒子质量范围7×10-17-17-2×10-14 eV = C 2上。
尤其是目前运行的强大望远镜宇宙气体,主要由电离原子和电子组成,并占宇宙总物质含量的15%以上(其余的归因于暗物质),继续避免了其精确的分布映射。虽然望远镜使我们可以轻松地观察星系中的恒星,但恒星仅占宇宙中所有气体的一小部分(约2%)。大多数气体嵌入宇宙丝中,并以热热层间培养基的形式存在。绘制其分布不仅对于理解复杂的天体物理过程至关重要,例如活跃的银河核和超新星的猛烈释放能量,而且对于揭示了宇宙中最深刻的奥秘,包括与重力,暗物质和宇宙膨胀有关的宇宙。t