简介 糖尿病是由正常功能的胰岛素分泌胰腺 β 细胞数量不足引起的 (1–4)。这促使人们尝试诱导 1 型糖尿病 (T1D) 和 2 型糖尿病患者体内残留的 β 细胞复制或再生。在过去的 4 年中,几个研究小组已经证明,抑制 β 细胞激酶、双特异性酪氨酸磷酸化调节激酶 1A (DYRK1A) 的药物能够在体内和体外诱导人类 β 细胞增殖。这类促进人类 β 细胞增殖的 DYRK1A 抑制剂包括哈尔明、INDY、亮氨酸-41、GNF4877、5-碘代结核菌素 (5-IT)、TG003、AZ191、CC-401 以及最近合成的 DYRK1A 抑制剂 (5–13)。多项报告显示,此类药物的人类 β 细胞增殖活性可通过沉默 DYRK1A 来模拟,而可通过在人类 β 细胞中过表达 DYRK1A 来抑制该活性 (5–7),这清楚地表明 DYRK1A 是这些药物增殖反应的重要介质。另一方面,有证据表明,DYRK1A 抑制剂可能还有其他靶点参与诱导人类 β 细胞增殖。首先,多个研究小组进行的激酶组筛选表明,每种 DYRK1A 抑制剂也能抑制其他激酶,特别是 CMGC(细胞周期蛋白依赖性激酶 [CDK]、丝裂原活化蛋白 [MAP] 激酶、糖原合酶激酶 3 [GSK3] 和 CDC 样激酶 [CLK])类的成员,特别是 DYRK1B、DYRK2、DYRK3、DYRK4、CLK1、CLK2、CLK4、GSK3 α、GSK3 β 和酪蛋白激酶 (CSNK) 1A、1D 和 E (7–13)。理论上,这些激酶都可能参与人类 β 细胞增殖。这里特别值得一提的是 GSK3,因为据报道,在小鼠中对 GSK3 β 进行基因或药物干扰会导致啮齿动物 β 细胞增殖(14、15),Shen 等人。研究表明,GSK3 β 抑制剂可能有助于 GNF4877 的疗效 (8)。另一方面,在人类中报道的数据有限。例如,刘等人报道,GSK3 β 抑制剂 LiCl 和 1-Akp 可使人类 β 细胞 Ki67 免疫标记从 0.17% 增加到 0.71% (15)。其次,每种 DYRK1A 抑制剂的剂量反应曲线揭示了人类 β 细胞
●总结细胞理论。●模型细胞结构并描述细胞器的功能。●比较原核生物和真核细胞中的/对比结构和功能。●定义代谢,呼吸,扩散,渗透和主动转运的过程。●定义选择性渗透性;解释细胞膜在维持稳态和收获能量中的作用。●比较光合作用和细胞呼吸过程中能量的基本变化。●确定DNA的结构和功能。●解释细胞周期的主要事件。●解释/模型有丝分裂。●说明/解释有丝分裂和分化在生产和维持复杂生物中的作用。●讨论有丝分裂未经检查时会发生什么。
摘要 有丝分裂在基于微管的纺锤体控制下,是抗癌治疗的一个有吸引力的靶点,因为癌细胞会经历频繁且不受控制的细胞分裂。破坏有丝分裂的微管靶向剂或有丝分裂激酶或微管马达的单分子抑制剂可以高效杀死癌细胞。然而,这些治疗方法存在严重的缺点:它们还针对经常分裂的健康组织,例如造血系统,并且由于原发性或获得性耐药机制,它们经常失去效力。在癌细胞分裂中出现的另一个目标是它们将有丝分裂纺锤体的极点“聚集”成双极结构的能力。这种机制对于癌细胞的特定存活是必要的,这些癌细胞由于经常存在异常的着丝粒数目或其他纺锤体缺陷而倾向于形成多极纺锤体。在这里,我们讨论了针对纺锤体极点聚集的组合治疗的最新发展,这些治疗专门针对具有异常着丝粒数目的癌细胞,并且由于其组合性质,有可能避免耐药机制。
摘要 有丝分裂在基于微管的纺锤体控制下,是抗癌治疗的一个有吸引力的靶点,因为癌细胞会经历频繁且不受控制的细胞分裂。破坏有丝分裂的微管靶向剂或有丝分裂激酶或微管马达的单分子抑制剂可以高效杀死癌细胞。然而,这些治疗方法存在严重的缺点:它们还针对经常分裂的健康组织,例如造血系统,并且由于原发性或获得性耐药机制,它们经常失去效力。在癌细胞分裂中出现的另一个目标是它们将有丝分裂纺锤体的极点“聚集”成双极结构的能力。这种机制对于癌细胞的特定存活是必要的,这些癌细胞由于经常存在异常的着丝粒数目或其他纺锤体缺陷而倾向于形成多极纺锤体。在这里,我们讨论了针对纺锤体极点聚集的组合治疗的最新发展,这些治疗专门针对具有异常着丝粒数目的癌细胞,并且由于其组合性质,有可能避免耐药机制。
从有丝分裂中退出是由磷光蛋白质组景观的急剧变化引起的。 依赖细胞周期蛋白依赖性激酶(CDK)活性,主要调节激酶以及诸如发芽酵母中Cdc14之类的诸如Cdc14之类的反破坏性磷酸化酶的激活,从而使有序的底物去磷酸化有序,从而允许进入新的细胞周期进入新的细胞周期和复制许可。 在减数分裂中,必须在没有中间DNA复制的情况下执行两个细胞分裂,这意味着必须将全球磷酸化和去型的替代化适应减数分裂的挑战。 使用萌芽酵母中的全球时间分辨磷酸蛋白质组学方法,我们比较了有丝分裂出口与从减数分裂I到减数分裂II之间的磷蛋白组景观。 我们发现,与有丝分裂的退出不同,在减数分裂I结束时,CDK磷酸基因磷酸化的磷酸化大部分稳定,而大多数与CDK无关的基序是通过去磷酸化来重置的。 然而,在减数分裂的中期,CDK的人工降低导致有序的底物去磷酸化,与有丝分裂相当,表明在减数分裂I的末端磷酸化I的磷酸化I的主要是有定性的,而不是定性下降的。从有丝分裂中退出是由磷光蛋白质组景观的急剧变化引起的。依赖细胞周期蛋白依赖性激酶(CDK)活性,主要调节激酶以及诸如发芽酵母中Cdc14之类的诸如Cdc14之类的反破坏性磷酸化酶的激活,从而使有序的底物去磷酸化有序,从而允许进入新的细胞周期进入新的细胞周期和复制许可。在减数分裂中,必须在没有中间DNA复制的情况下执行两个细胞分裂,这意味着必须将全球磷酸化和去型的替代化适应减数分裂的挑战。使用萌芽酵母中的全球时间分辨磷酸蛋白质组学方法,我们比较了有丝分裂出口与从减数分裂I到减数分裂II之间的磷蛋白组景观。我们发现,与有丝分裂的退出不同,在减数分裂I结束时,CDK磷酸基因磷酸化的磷酸化大部分稳定,而大多数与CDK无关的基序是通过去磷酸化来重置的。然而,在减数分裂的中期,CDK的人工降低导致有序的底物去磷酸化,与有丝分裂相当,表明在减数分裂I的末端磷酸化I的磷酸化I的主要是有定性的,而不是定性下降的。
debio 0123是一种研究性的,口服的,高度选择性的三磷酸腺苷(ATP) - WEE1酪氨酸激酶的竞争性抑制剂。wee1是细胞周期进程的关键调节剂,通过调节依赖细胞周期蛋白依赖性激酶1的活性(CDK1,也称为细胞分裂周期2 [CDC2])来影响有丝分裂的进入。抑制WEE1在依靠WEE1调节的细胞周期检查点或增强DNA损害剂的细胞中,在癌症治疗中提供了机会。提议的Debio 0123作用机理涉及促进具有累积DNA损伤细胞的不受控制有丝分裂,并最终通过有丝分裂灾难的细胞死亡。
第 12 章 有丝分裂抑制剂的故事 – 长春花 – 紫杉醇 221009dj3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 12 章 有丝分裂抑制剂的故事:紫杉醇和长春花。 本章介绍的抗癌药物是在某些植物或海洋生物中发现的毒素,它们可以阻断在有丝分裂过程中将染色体拉开的微管。微管还将必需分子沿着神经细胞的轴突向下传送,这就是这些药物会损害神经细胞的原因。 来自天然产物的抗癌药物 自然界的动物、植物和微生物充满了生物战剂,不同物种之间会发生冲突。天然毒药可以抵御捕食者和竞争对手。有些药物历来被人们用来下毒或治病。有些药物被用作治疗癌症的药物(Cragg 和 Newman,2004;Vindya 等人,2015)。由于这些药物也是毒药,因此,与大多数用于癌症化疗的药物一样,必须仔细调整给患者的剂量,以在不产生过多毒性的情况下对癌症产生显著作用。那么,这些微管毒药是如何起作用的呢?在有丝分裂期间,新形成的染色体对被称为微管的纤维拉开。然后每个子细胞都会得到一对新形成的染色体对,尽管癌细胞通常有异常的有丝分裂,从而产生具有异常染色体组的细胞。抗微管药物的主要作用是削弱有丝分裂时的细胞分裂。然而,与大多数癌症化疗一样,这些微管结合药物仅对那些比关键正常组织对它们更敏感的癌症有效。我将讲述两类抗微管药物的故事,它们
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
抽象的静息状态功能性MRI(RS-FMRI)被广泛用于检查婴儿的动态大脑功能发育,但是这些研究通常需要精确的皮质细胞层析图,由于婴儿和成人之间功能性大脑的实质性差异,无法直接从基于成人的功能性分层图中借用。创建婴儿特异性皮层拟层图是高度期望的,但由于在获取和加工婴儿脑MRIS上的困难,因此仍然具有挑战性。在这项研究中,我们利用了1064个高分辨率的纵向RS-FMRIS,从197个通常从出生到24个月的婴儿和幼儿开始,他们参加了Baby Connectome项目,以开发第一组婴儿,表面性的,表面基于表面的皮质功能型映射。为了建立跨个体的有意义的皮质功能对应关系,我们使用皮质折叠几何特征和功能连接性(FC)进行了皮质共同注册。然后,我们根据年龄相关和与年龄无关的皮质划线图产生了基于跨个体的局部FC的局部梯度图,在婴儿期间具有超过800个细粒度的包裹。这些分析图揭示了复杂的功能发育模式,例如局部梯度,网络规模和局部效率的变化,尤其是在产后的前9个月。我们的生成细粒婴儿皮层功能分析图可在https:// www上公开获得。nitrc.org/projects/infanturfatlas/用于前进儿科神经影像学领域。
染色体分离需要动粒蛋白复合物和有丝分裂纺锤体的协调,这对于两个子细胞之间的准确遗传分裂至关重要。动粒是一种位于姊妹染色单体着丝粒的蛋白复合物。在有丝分裂过程中,可以观察到动粒实际上是在有丝分裂纺锤体的引导下将姊妹染色单体“引导”到伸长细胞的相反极点。有人提出,动粒复合物中的小蛋白 Stu1 有助于延迟芽殖酵母酿酒酵母的后期,直到每条染色体都附着在有丝分裂纺锤体上。Stu1 与纺锤体相互作用,并在纺锤体伸长时与其同步移动。磷酸化可能在调节 Stu1 功能方面发挥重要作用。在酵母中,MELT 是一种常见的磷酸化位点,因此,去除 Stu1 上 MELT 基序上的苏氨酸氨基酸可能会影响姐妹染色单体正确分离的能力,从而导致酵母活力下降。MELT 是真菌中保存良好的序列,并且已知是 Stu1 其他同源物中的磷酸化位点。利用 CRISPR-Cas9 酶,我们将在芽殖酵母 STU1 基因中引入磷酸化无效突变,以将 MELT 序列中的苏氨酸 719 密码子替换为缬氨酸密码子。我们假设这种突变会导致 Stu1 蛋白发生故障,这可能会阻碍其协调纺锤体和着丝粒附着的能力,并进一步阻止有丝分裂期间染色体分离。