SiR-DNA/SiR – Hoechst 是一种远红荧光 DNA 探针,常用于对间期细胞核和有丝分裂期间的染色体进行活细胞成像。尽管有报道称 SiR-DNA 会引起 DNA 损伤,但它已在 300 多篇研究文章中使用,涵盖有丝分裂、染色质生物学、癌症研究、细胞骨架研究和 DNA 损伤反应等主题。在这里,我们使用活细胞成像对 SiR-DNA 对四种人类细胞系(RPE-1、DLD-1、HeLa 和 U2OS)有丝分裂的影响进行了全面分析。我们报告了 SiR-DNA 对染色体分离的剂量、时间和光依赖性影响。我们发现,在成像过程中暴露于光线下时,纳摩尔浓度的 SiR-DNA 会诱发非着丝粒染色体缠结,严重影响后期姐妹染色单体分离和纺锤体伸长。这会导致 DNA 损伤,并传递到下一个细胞周期,从而对基因组完整性产生不利影响。我们的研究结果突出了使用 SiR-DNA 研究晚期有丝分裂事件和 DNA 损伤相关主题的缺点,并敦促使用替代标记策略来研究这些过程。
AKT,蛋白激酶B; CREB,环状腺苷单磷酸反应元件结合蛋白;细胞仪,飞行时间的细胞仪; DMSO,二甲基磺氧化物; ERK,细胞外信号调节激酶; IRF,干扰素调节因素; Jak,Janus激酶; MAPKAPK,有丝分裂原激活的蛋白激酶激活的蛋白激酶; MEK,有丝分裂原激活的蛋白激酶激酶; MTOR,雷帕霉素的哺乳动物靶标; PI3K,磷酸肌醇-3激酶; STAT,信号换能器和转录激活因子; TPO,血小子蛋白; wt,野生型。AKT,蛋白激酶B; CREB,环状腺苷单磷酸反应元件结合蛋白;细胞仪,飞行时间的细胞仪; DMSO,二甲基磺氧化物; ERK,细胞外信号调节激酶; IRF,干扰素调节因素; Jak,Janus激酶; MAPKAPK,有丝分裂原激活的蛋白激酶激活的蛋白激酶; MEK,有丝分裂原激活的蛋白激酶激酶; MTOR,雷帕霉素的哺乳动物靶标; PI3K,磷酸肌醇-3激酶; STAT,信号换能器和转录激活因子; TPO,血小子蛋白; wt,野生型。
- 在 ................................. 前期,核膜碎裂成碎片 - 在 ................................. 中期,纺锤体有丝分裂的赤道板形成 - 在 ................................. 中期,染色单体分离形成两组子染色体 - DNA 合成的时期称为 S 期 - 纺锤体有丝分裂由微管组成,微管是亚基微管蛋白的聚合物 - 染色体迁移是通过纺锤体微管与与每个染色体的着丝粒相关的结构结合实现的:着丝粒
图 1 RACGAP1 在 ESCC 中高度上调。(A、B)与健康组织相比,ESCC 组织中 RACGAP1 的 mRNA 表达显著上调,这由来自 GEO 的三个微阵列数据集(A)以及来自 TCGA 数据的 RNA-seq 数据(B)表明。(C)进行 QPCR 检测以验证 ESCC 组织(n=96)与邻近健康组织(n=20)相比 RACGAP1 mRNA 水平的上调。(D)Kaplan-Meier 曲线显示高 RACGAP1 表达组的总生存期 (OS) 时间明显较短。P 值由对数秩检验确定。(E)左图:Western blotting 检测显示 ESCC 组织中的 RACGAP1 蛋白水平高于匹配的邻近健康组织。右图:灰度分析的统计结果。P 值由配对 t 检验确定。***,P<0.001。
富集了生物调控、代谢过程、刺激反应、多细胞生物过程、细胞通讯、染色体分离、有丝分裂核分裂等生物过程(BP)(图5.D、E);细胞膜、细胞核、含蛋白复合物、有丝分裂纺锤体、微管等生物成分(CC)(图5.D、E);分子功能,如蛋白质结合、离子结合、核酸结合、水解酶活性、转移酶活性、染色体-
致作者的评论(必填):在本稿中,Lama 及其同事认为 PICH 重塑了 SUMO 化蛋白,以确保纺锤体组装检查点的正确暂时沉默。支持这一想法的主要观察结果是,PICH 的消耗,或在缺乏内源性 PICH 的细胞中重新表达缺乏 SUMO 结合能力或 ATPase 活性的外源性 PICH 突变体(分别被识别为 PICH ∆3SIM 和 K128A)在有丝分裂中(非常轻微地)延迟。作者询问这种短暂的停滞是否是由 Topo2alpha 依赖性通路的激活引起的(在之前的论文中进行了描述,并命名为 TRC,代表 Topo2alpha 响应检查点)。在得出事实并非如此的结论后,他们转向纺锤体组装检查点 (SAC),并发现在 PICH 消耗时或在表达功能失调的 PICH 突变体的细胞中,检查点蛋白 MAD1 在动粒上的停留时间延长。由于已知 PICH 会与 SUMO 化蛋白相互作用,作者推测 PICH 的缺失或用突变体替代可能导致 SUMO 化蛋白的积累,这可能是观察到的有丝分裂延迟的原因。为了验证这个想法,作者生成了一个表达标记 SUMO2 的细胞系,并比较了在存在或不存在 PICH 功能的情况下 SUMO2 结合蛋白的丰度。这确定了几种蛋白质,当 PICH 功能受损时,它们的 SUMO 化似乎会增加。在这些蛋白质中,作者确定了 BUB1,并证明在 PICH 缺失后 BUB1 动粒水平略有增加,这种影响可能是由于检查点激活恢复缺陷造成的。作者的模型是 PICH 有助于从动粒中去除 SUMO 化蛋白以促进检查点沉默。本文介绍的工作是通过创建几个细胞系实现的,清楚地反映了作者的大量宝贵努力。这项研究的主要局限性在于,观察到的影响非常小,并且没有最终证据表明导致这些影响的 PICH 的功能是精确且完全调节性的。它可能反映出持续的小附着错误,可能是由着丝粒染色质组织中的小问题引起的,该问题会向 SAC 发出信号。也就是说,延迟可能不只是反映出沉默错误,而是持续的检查点激活,这是作者没有解决的问题,而且考虑到停滞的实体很小,这个问题很难解决。在这方面,提出的模型也将过度的 SUMO 化确定为有丝分裂延迟的原因,虽然并非难以置信,但在分析的这个阶段似乎没有得到充分支持。在没有 PICH 的情况下观察到 SUMO 化增加,但细胞能够在对照细胞之后几分钟离开有丝分裂,这意味着必须存在处理过量 SUMO 的其他蛋白质。由于作者没有排除有丝分裂延迟仅仅是由真正的 SAC 激活引起的,PICH 在控制 SUMO 化方面的作用仍不确定。因此,总的来说,我认为这项研究虽然很有价值,但尚未代表完全令人信服的概念或机制进步。其他问题 - 图 1c 和 2c 中 ∆PICH 细胞中有丝分裂时间的差异引发了一致性问题。为什么这两种情况下有丝分裂退出的时间不同? - 在图 3 中,∆PICH 细胞中动粒处 MAD1 的持续时间远远超过 50 分钟,即远远超过这些细胞退出有丝分裂所需的时间(约 35 分钟,如图 1 所示)。这似乎相当难以置信,因为 MAD1 从动粒处的丢失总是先于有丝分裂退出。次要观点 -图 1B:最后一行,第 5 个面板,右下角部分隐藏的文本 -图 1C:如果作者指出此图中所示各种条件下有丝分裂退出的平均时间,将会很有帮助。 -在文本和相关图中指出 TopoIIalpha 带有 FLAG 标记
摘要:Aurora 激酶属于高度保守的丝氨酸/苏氨酸激酶家族,在细胞周期调控中发挥关键作用,由三个成员组成:Aurora 激酶 A、B 和 C,它们是维持染色体稳定性所必需的关键有丝分裂调节剂。Aurora 激酶在有丝分裂的多个事件中起着至关重要的作用,例如协调染色体和细胞骨架事件、调节纺锤体组装检查点通路和胞质分裂,以确保细胞周期的顺利进行。除了有丝分裂功能外,Aurora 激酶还参与减数分裂的调节。在各种实体和血液系统癌症中都检测到了 Aurora 激酶的基因扩增/突变和过表达。在人类肿瘤中,Aurora 激酶表现出与其有丝分裂作用相关的致癌作用,从而驱动癌细胞增殖和存活。 Aurora 激酶活性失调会导致着丝粒功能、纺锤体组装、染色体排列和胞质分裂失败,最终导致有丝分裂异常和遗传不稳定。这些发现强调了 Aurora 激酶在癌症中的关键作用,促使人们认识到它们是癌症治疗的重要靶点。本综述概述了 Aurora 激酶的结构和功能,并阐明了它们在癌症中的致癌作用。