摘要 - 本文基于现场实测案例,采用三维有限元法分析了软海洋粘土中深支撑基坑相邻桩群的响应。对由 2×1、4×1、8×1 和 8×2 桩组成且中心间距分别为 2d 和 3d 的桩群进行了数值研究。计算了最大桩弯矩的群系数,以研究桩直径、桩间距和桩数对群效应的影响。比较了两排桩群中中心桩和边缘桩以及前桩和后桩的群系数。本研究得出的结论可为考虑桩土相互作用和群桩效应的相邻基桩深支撑基坑设计提供指导。
12. 赞助机构名称和地址 船舶结构委员会 美国海岸警卫队 (G-MSE/SSC) 2100 Second Street, SW Washington, DC 20593 14. 赞助机构代码 GM 15. 补充说明 由船舶结构委员会赞助。由其成员机构共同资助。 16. 摘要 本研究的目的是开发通过摩擦搅拌焊接制造的 5000 系列和 6000 系列铝加筋板结构的机械屈曲破坏试验数据库,并将这些结构与通过熔化焊接制造的类似铝板在焊接引起的初始缺陷和极限抗压强度性能方面进行比较。讨论了与熔化焊接和摩擦搅拌焊接程序相关的趋势或优势。以下是这些讨论的摘要。 • 发现摩擦搅拌对接焊接铝合金的屈服强度和极限拉伸强度相当于甚至优于熔化焊接铝合金。 • 搅拌摩擦焊接引起的初始缺陷往往比熔化焊接引起的缺陷小。因此,搅拌摩擦焊接工艺在这方面的优势显而易见。• 搅拌摩擦焊接铝结构的极限强度性能比熔化焊接铝结构高 10-20%。这意味着,只要能防止分层,搅拌摩擦焊接工艺在极限抗压强度性能方面肯定优于熔化焊接工艺。• 然而,所有搅拌摩擦焊接测试结构在达到极限强度之后甚至之前都在焊接区域出现了分层。这表明,熔化焊接工艺在焊接区域的抗压强度性能方面优于搅拌摩擦焊接工艺。• 再次证实,非线性有限元法计算在很大程度上取决于所应用的结构建模技术。 17. 关键词 铝加筋板结构,极限强度,搅拌摩擦焊,熔化焊,焊接引起的初始缺陷,屈曲破坏试验,非线性有限元法计算
摘要:本研究采用有限元法(FEM)对层压复合材料结构进行拓扑优化数值研究。在该方法中,层片方向被排除在优化之外。介绍了中空长航时无人机机身结构框架的几何优化。目标函数中使用了最小应变能,优化约束为减重20%。在进行初步分析之前,对以前发表的文献中不考虑方向的拓扑优化进行了基准研究。进行了收敛研究,以获得FEM技术中合适的网格尺寸,该技术利用了四节点壳单元。有限元分析与优化结果表明,新型框架复合材料机身中空长航时无人机结构设计满足适航标准STANAG 4671规定的结构强度要求。
摘要:本文讨论了脑组织机械行为的非线性粘塑性模型的数值方面和实现,以模拟与可能导致创伤的冲击载荷相关的动态响应。在现有的各种粘弹性模型中,我们特意考虑修改诺顿-霍夫模型,以引入非典型的粘塑性软化行为,模拟快速撞击后仅几毫秒的大脑反应。我们描述了模型的离散化和三维实现,目的是在合理的计算时间内获得准确的数值结果。由于问题的规模大、复杂性,采用了时空有限元法的并行计算技术来提高计算效率。事实证明,经过校准后,引入的粘塑性软化模型比常用的粘弹性模型更适合模拟快速冲击载荷特定情况下的脑组织行为。
摘要:本文利用有限元法(FEM)将PoP(Package on Package)用PCB分成单元和基板进行翘曲分析,分析层厚度对翘曲的影响,并利用田口法计算SN(信噪比)。分析结果显示,在单元PCB中,电路层对翘曲的贡献很大,其中外层的贡献尤其大。另一方面,基板PCB虽然电路层对翘曲的影响较大,但相对于单元PCB来说相对较低,阻焊剂的影响反而较大。因此,同时考虑单元PCB和基板PCB,PoP用PCB的逐层结构设计时,宜使外层和内层电路层较厚,顶层阻焊剂较薄,底层阻焊剂厚度在5μm~25μm之间。
摘要 —本文基于 MEMS 技术设计并制作了带穿孔电极的驻极体振动能量收集器。装置中的固定电极上分布有通孔,以优化能量收集过程。在有限元法 (FEM) 模拟和实验中分析并讨论了孔对装置输出功率的影响。可以看出,通孔可以有效降低大气中可移动质量块上的挤压膜空气阻尼力。因此,可以减少由于空气阻尼造成的能量损失,并增加装置的输出功率。还详细研究了孔直径和数量对装置输出功率的影响。通过优化孔的配置,孔直径为 400 µ m、深度为 100 µ m 的穿孔装置在 1.84 m/s 2 的低加速度下表现出最高的功率输出,这证明了未来在自供电电子产品中的良好应用。 [2020-0380]
摘要 — 在本文中,我们介绍了一种 TM 偏振 C 波段的一维光子晶体条带波导 (1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准 CMOS 技术即可轻松实现。通过 3D 有限元法 (FEM) 进行了数值研究。通过优化器件的几何参数,提高了透射率和偏振消光比 (PER)。因此,TM 偏振光可以在波导中传播,在整个 C 波段电信波长窗口内损耗约为 2 dB,而 TE 偏振光的传输损耗高达 >30 dB。因此,在整个 C 波段波长范围内可获得 ~28.5 dB 的 PER。所提出的器件的总长度约为 8.4 µm,包括两端的 1 µm 硅条带波导段。基于本文的研究,可以实现需要严格偏振滤波的多种光子器件。
6 1D 和 2D NMR 光谱:在结构生物学中的应用(周二)2+0 7 工程师会计(周二和周四)3+0 8 “知识产权”(IPR)对工业和学术界的重要性(周二)2+0 9 Linux 环境简介:操作系统、命令、实用程序和 Shell 脚本(周二和周四)3+0 10 服务设计思维(周二)2+0 11 战略管理(周二和周四)3+0 12 基础光谱学和仪器(周三)2+0 13 使用微控制器的嵌入式系统设计(周三)2+0 14 数值网格生成和流体流动计算简介(周三)2+0 15 工程结构和系统中的振动和噪声控制(周三)2+0 16 传感信号的机器学习(周四)2+0 17 信号处理的神经网络 -1 (周四和周五) 3+0 18 面向智能电网的电力系统自动化 (周四和周五) 3+0 19 复合结构分析与设计 (周五) 2+0 20 工业物联网 (IIoT) (周五) 2+0 21 工程结构与系统的结构分析与设计优化 (周五) 2+0 22 基因工程与转基因技术的进展 (周六) 2+0 23 有限元法的基本概念 (周六) 下午 2 点至 4 点 2+0 24 数据分析基础 (周六) 2+0 25 基础法语 (周六) 下午 2 点至 4 点 2+0 26 衰老与疾病的细胞与分子生物学 (周六) 下午 2 点至 4 点 2+0 27 通信协议、设计与多媒体应用(周六) 下午 2 点至 4 点 2+0 28 声学概论(周六) 2+0 29 非线性有限元法(周六) 2+0 30 性能建模与仿真(周六) 3+0 31 生物学技术在研究中的原理和应用(周六) 2+0 32 汽车工业中的智能设计方法和流程(周六) 下午 2 点至 4 点 2+0 33 无线局域网概念、安装、故障排除和测试(周六) 2+C 34 软件测试自动化(周六) 下午 2 点至 4 点 2+0
摘要:隧道内部变形是由于上部结构附加荷载、超载、岩土体内部应力等因素引起的。隧道变形测量对于确定隧道塑性变形的大小具有重要意义,是隧道安全监测的重要环节。本研究采用有限元法分析了位于四层岩层中、受地下水影响、采用新奥隧道施工方法 (NATM) 逐步开挖的马蹄形或蛋形隧道的三维非线性行为。详细研究了随着开挖步骤的不同,拱顶和隧道周围受到不同载荷条件作用而发生的永久变形。此外,通过变形曲线对两种隧道几何形状下所有开挖阶段隧道关键段发生的永久变形进行了相对比较。已经确定,选择隧道几何形状为蛋形而不是马蹄形更有利于减少浅层和层状岩石环境中的下沉和收敛量。
任意横截面的轴向应力监测是一项具有挑战性的任务。桁条是飞机蒙皮结构的主要轴向承载部件,具有典型的复杂横截面。本文研究了基于声弹性导波的压电锆钛酸铅 (PZT) 传感器的任意横截面轴向应力监测策略。为了选择对任意横截面轴向应力监测敏感的适当导波频率和模式,使用声弹性理论结合半解析有限元法研究特征导波。推导出模态形状,表明这些纵向模态对轴向应力更敏感。还考虑使用 PZT 换能器阵列来最大化所需模式。压电传感器用于在实验中激发和检测导波。给出了 T 型桁条的声弹性测量结果,表明该方法用于轴向应力监测的可行性。