A. Keller 1 、A. Lauber 2 、A. Doberer 2 、J. Good 2 、T. Nussbaumer 2 、MF Heringa 3 、PF DeCarlo 3 、R. Chirico 3 、A. Richard 3 、ASH Prevôt 3 、U. Baltensperger 3 和 H. Burtscher 1 1 瑞士西北应用科学大学气溶胶和传感器技术研究所,5210,温迪施,瑞士 2 卢塞恩应用科学与艺术大学工程与建筑学院,6048,霍尔夫,瑞士 3 保罗谢尔研究所大气化学实验室,5232,菲利根,瑞士 木材燃烧是一种可再生和二氧化碳中性的能源。然而,在燃烧过程中,它会排放颗粒物,对气候、能见度和人类健康有影响。直到最近,人们还认为木材燃烧对环境颗粒物浓度的贡献很小,并为了减少其他来源的污染而忽视了这一点。这种情况已经发生了变化:最近的污染源认定研究表明,木材燃烧是颗粒物污染的主要来源之一。然而,这种燃烧形式带来了一个全新的挑战,因为与木材燃烧有关的大气颗粒物中很大一部分最初是在气相中排放的。这些是碳氢化合物分子,也称为有机气态碳 (OGC),一旦进入大气就会转化为称为二次有机气溶胶 (SOA) 的颗粒。在本文中,我们展示了这种情况的排放方面。我们介绍了不同住宅生物质燃烧装置的排放因子,重点介绍了冷凝相和气相中排放的有机物。当比较这两个阶段时,SOA 作为环境 PM 组成部分的相关性变得显而易见。我们的测量结果表明,有机物仅占直接排放颗粒质量的一小部分。典型的有机物与黑碳比率 (OM/BC) 在颗粒锅炉中约为 1.3,而在原木炉中则低至 0.2。这与大气中测量到的高浓度有机物形成鲜明对比,在大气中,与木材燃烧相关的有机物与元素碳比率可高达 20(参见 Szidat,2006 年及其参考文献)。差异是由源自 OGC 排放的 SOA 有机物引起的。这引发了一个问题,即如何量化燃烧的质量及其潜在影响。例如,现代原木炉和自动颗粒锅炉可能具有相似的颗粒物排放因子,但它们的 OGC 排放量完全不同(见图 1)。特别是在稳定阶段,自动颗粒锅炉几乎不排放 OGC。其他研究(例如 Chirico,2010 年)证实,颗粒锅炉具有较小的 SOA 生产潜力。此外,研究表明,对于 PM 排放因子相对较小的变化(即相差不到一个数量级),而 OGC 的排放因子可以相差大约三个数量级(Johansson,2004)。目前的标准只包括排放中的固体部分,而忽略了气相,更重要的是,忽略了它的 SOA 生成潜力。这导致排放侧测量的颗粒质量与实际大气浓度之间存在很大差异。这种差异直接影响基于测量排放因子的其他研究。例如,风险评估和环境影响研究有一组不完整的数据,其中没有考虑 SOA,而且由于初级气溶胶和次级气溶胶的化学性质不同,它们的毒性和变暖潜力等特性也有很大差异
Osapiens支持来自各个行业的全球公司,以促进其组织内部的可持续性并为未来定位。为了实现这一目标,Osapiens开发了Ho Listic软件即服务解决方案,从而在整个价值链中创造透明度和可持续增长,满足法律ESG要求并自动化手动流程。Osapiens的目标不仅旨在在经济上加强公司,而且还促进了人权和生态可持续和负责任的公司治理作为全球标准。
从制造坚固的再生塑料到用它们制造传统上由木材制成的物品,需要一种创新的“展示而非讲述”策略。几个世纪以来,树木木材一直是建筑的首选耐用、灵活且价格实惠的原材料。但木材也有缺点;它需要防虫、防其他动物和防风雨,而且它通常用有毒的防腐剂处理,这些防腐剂会渗入土壤、水和地下水,对人、动物和环境构成风险。
大规模木材的结构涉及使用工程木材产品,例如跨层压木材(CLT)和胶层型木材(Glulam),用于梁,柱和面板等结构组件。质量木材在碳固隔方面具有优势,因为木材捕获并在生长过程中存储二氧化碳。另一方面,钢铁是由铁矿石和煤制造的,在生产过程中导致了大量的温室气体排放。但是,钢结构的寿命更长,可以在使用结束时回收,从而有可能降低整体环境影响。这项研究考虑了从物质提取到寿命末期的整个生命周期的质量木材和钢结构结构的比较分析[2]。生命周期评估(LCA)方法可用于量化与每种材料相关的碳排放,并考虑到诸如日志记录,铣削,制造,运输,建筑和拆除等过程。通过检查多种方案和施工类型,该研究旨在全面了解大型木材和钢铁之间选择的碳足迹含义。未来的研究方向可能涉及探索混合构造方法,这些方法结合了质量木材和钢元素,以优化环境性能,同时利用每种材料的优势。此外,可持续林业实践,木材处理技术和钢铁生产过程的进步可以进一步减少两种材料的环境足迹[3]。
随着经济的快速发展,特别是人口增长引起的建筑能耗急剧增加,能源与环境问题已成为世界性议题。1–4 基于相变材料 (PCM) 的储热材料被认为是解决这些问题的一种解决方案。PCM 是指在相变过程中能吸收或释放大量能量,并保持一定范围内恒温的材料。5–8 因此,将 PCM 与建筑材料结合有助于调节室内温度、降低建筑能耗。根据相变状态,PCM 可分为固-液、固-固和固-气 PCM。9–11 与其他两种 PCM 相比,固-液 PCM 应用最广泛,其优势在于潜热高、成本低。12–15
大规模木材建设被普遍认为是一种有希望的替代建筑方法,可以减少建筑物的总生命周期碳排放量,因为木材是碳水槽。跨层压木材(CLT)面板,由粘合木材层以晶粒成直角制造,是潜在的低碳替代品碳密集型混凝土和钢结构的替代品。但是,在计算生命周期影响时,大多数环境影响评估研究都不考虑CLT供应链中运输影响的变化。这项研究调查了有关使用的木材物种类型的CLT供应链决策的体现的原始能量和全球变暖潜力(GWP),其来自美国地区的区域以及CLT磨坊的位置。在木材和CLT面板的供应链中较长的传输距离可以贡献923 MJ/m 2(20%)CLT建筑物的体现的原始能量,并且使用高密度的木材物种会增加1246 MJ/M 2(24%)的贡献,其中大部分能量来自Fossil Energy源。透视图,一栋建筑物的GWP的CLT面板和木材已被卡车运输到6,000公里以上(252 - 270 kgco 2 /m 2)大于等效钢筋混凝土(RC)建筑物(245 kgco 2 /m 2)的GWP。因此,诸如CLT加工设施的位置以及木材物种的类型等因素可以显着影响整体生命周期评估,如果选择适当地选择,可以减轻CLT构造的环境影响。
暴风雨事件后,木材的价值通常会降低。随着时间的推移,大风树的木材价值下降。有必要快速评估落叶木材的木质质量。在这项研究中,研究了砍伐树木的时间对大规模木材质量的影响。南部黄松树被砍伐,并在森林里呆了0到6个月。然后将树加工成尺寸木材。记录了木材质量。评估了木材的非破坏性特征。密度,声速(AV)和弹性模量(D MOE)。交叉层压木材(CLT)面板。评估了CLT面板的AV和D MOE。在AV和D MOE中都检测到木材和CLT面板之间的统计学上显着差异。可以得出结论,可以使用无损评估来估计这些CLT面板的D MOE。
温度调节器使锅炉水保持所需温度。三通阀可手动调节加热回路的温度。炉床的耐火材料和同心形状有助于在低功率下实现极大的操作灵活性。可以使用安装在锅炉上的 150 升不锈钢水箱生产生活热水。
是的。Dias 大法官认为,由于承认裁决不涉及司法行为,因此第 1(1) 条不适用,这一结论是错误的[36]。根据《1966 年仲裁法》,承认仲裁裁决需要法官自行判断,除其他事项外,仲裁裁决的真实性证明标准已得到满足[37]。对外国作出判决是英国法院行使其裁判管辖权的明显例子,因此适用了《仲裁法》第 1 条[38]。《仲裁法》第 23(3) 条的排除规定——排除《仲裁法》生效日期之前发生的“事项”——并不排除《公约》或《1966 年仲裁法》[41]。
来自化石燃料的温室气体排放是世界温室气体总量的重要组成部分。4,5如果各国政府不进一步努力减少温室气体排放,预计到 2050 年温室气体排放量将上升 52%。4,6预计到 2100 年底地球平均地表温度将上升约 1.1°C 至 6.4°C,对环境和生态系统造成不可逆转的影响,并严重损害人类健康。4全球三分之一的温室气体排放和 40% 的能源消耗来自建筑行业。因此,建筑物在室内环境中使用大量能源用于日光照明、制冷和供暖。7-9 2018 年 11 月,欧盟委员会已承诺将温室气体排放量减少至少 40% 至 1990 年的水平,同时提高能源效率 32.5%,并将可再生能源增加到 32%。 10,11 为了实现这些目标,研究人员、建筑师和建筑工程师致力于减少建筑能耗、碳排放以及使用和储存可再生能源。7,9,12