挪威气象研究所(MET NORWAY)在天气预报开发中心的机器学习(ML)科学家开设了永久性地位。成功的候选人将在建立,部署和应用世界领先的,基于ML的天气预报系统中发挥重要作用。这项工作是与欧洲中等天气预报(ECMWF)以及欧洲其他组织合作进行的。这项工作将涉及解决地球系统建模的机器学习中令人兴奋的研究问题,重点是北欧天气条件。优化大型ML模型和探索合奏方法将是开发和实施最佳模型配置以进行准确可靠的天气预测的关键。另一个主题是构建和扩展可用于培训的ML就绪数据集。结果将支持ML在天气科学和先锋数据驱动的预测模型中的快速发展及其在改善天气服务(例如YR)的天气预测价值链中的作用。
这项研究深入研究了健康保险交叉销售,其中将其他保险产品促进了现有保单持有人,建议对拥有基本健康保险的人进行补充保险,例如牙科或人寿保险。这项研究的重点是应用机器学习来预测南非客户之间的交叉销售机会。目的是开发一种预测模型,以帮助健康保险公司确定潜在的交叉销售客户。利用定量研究方法,使用各种机器学习算法(包括随机森林,k-nearest邻居,Xgboost分类器和python中的逻辑回归)分析了健康保险消费者信息的全面数据集。结果表明,逻辑回归是表现最佳的模型,当在1,000,000个健康保险客户的数据集中接受17个功能,包括健康保险客户信息,因此获得了0.83的准确得分,F1得分为0.91。发现的分析表明,以前的保险和更长的服务历史的客户更有可能购买其他健康保险产品。这些见解使健康保险公司通过改善客户的目标和保留策略来增强收入,从而为行业对有效的交叉销售方法的理解提供了宝贵的信息。该方法包括定量数据提取和机器学习应用,因此有助于交叉销售策略理解的进步。
(3)深层生成模型求解随机过程:研究求解随机模型(例如扩散模型)(例如扩散模型)(例如,扩散模型)中随机过程的随机微分方程(SDE)或部分微分方程(PDE)(PDE)(PDES)。模型)在培训期间(5)生成模型中的隐式偏见和正则化:探索生成模型中存在的隐式偏见及其对概括的影响。研究显式和隐式正则化技术的有效性(6)生成模型的鲁棒性和泛化边界:分析生成模型的鲁棒性界限及其在分布分布的场景下(7)潜在的空间几何形状(7)潜在的空间几何学和流形学习:分析与生成模型的潜在空间和与生成数据分配的分析及其关系分配的相关性。探索如何平衡潜在空间中的多样性和发电质量,并研究复杂数据情景中不同流形学习技术的有效性和局限性
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
水是所有人类活动的必要组成部分。根据联合国世界水评估计划,每天,200万吨污水,制造和农业废物被排放到世界水中。由于人口需求和减少清洁水供应以及可用的水污染管理机制;迫切需要使用计算方法智能管理可用的水。本文提出了人工神经网络,特别是卷积神经网络(CNN),用于自动化水杂质检测。为了完善模型,使用管道中的浑浊水的图片来检测事件。深度学习的算法通过4220张图像的数据集进行了大量培训后达到96.3%的准确性,反映了各种污染的污染。这表明该模型可用于水系统污染检测。
本摘要概述了机器学习模型在网络安全领域的有效性,并强调了可解释的AI在授权安全分析师中的重要性。随着网络威胁的复杂性和复杂性的日益增长,组织正在转向高级技术,例如机器学习,以增强其防御机制。但是,传统机器学习算法的黑盒性质阻碍了其在安全操作中的采用。本文通过为机器学习模型的决策过程提供可解释的见解,探讨了可解释的AI及其潜力解决此限制的概念。通过提高透明度和问责制,可以解释的AI为安全分析师提供必要的工具,以更好地理解,验证和信任这些模型的输出。通过研究当前的研究和行业实践,这项研究强调了可解释的AI在促进人类与机器学习算法之间有效合作的重要性,最终增强了网络安全工作。
课程目标:本课程采用一种实用的方法来分析生物医学数据。这样做,三个目标努力。首先,学生将熟悉不同分析方法的必要理论背景,使他们能够了解为什么某些方法在某些情况下是合适的以及为什么其他方法不适合。第二,学生将获得分析生物医学数据所需的实用,动手技能,包括数据管理,算法开发和适当的代码库开发。这些技能将使学生在学术研究和行业内的独立研究项目中做好准备。第三,学生将学习如何解释,可视化和总结分析结果后完成。应用分析方法只是科学发现的挑战的一半。本课程的第三个目标是培训学生将科学分析的结果收集到一种格式,该格式可以与其他研究人员共享并理解科学发现。
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。