自动纤维铺放 (AFP) 已成为航空航天工业中复合材料的流行加工技术,因为它能够在制造复杂部件时将预浸料或胶带精确地放置在准确的位置。本文介绍了用于复合材料飞机机身蒙皮制造的 AFP 心轴的设计、分析和制造。根据设计要求,开发了 AFP 心轴,并通过有限元法进行了数值研究。考虑了心轴结构自重和来自 AFP 机头的 2940 N 负载,进行了线性静态载荷分析。还进行了模态分析以确定心轴的固有频率。这些分析证实了所提出的心轴符合设计要求。然后制造了一个原型心轴并用于制造复合材料机身蒙皮。对 AFP 机身蒙皮曲面层压板、等效平面 AFP 和手工铺层层压板进行了材料载荷测试。平面 AFP 和手工铺层层压板在拉伸和压缩方面表现出几乎相同的强度结果。与手工铺层相比,平面 AFP 层压板的拉伸模量高 5.2%,压缩模量低 12.6%。AFP 曲面层压板的极限抗压强度比平面层压板高 1.6% 至 8.7%。FEM 模拟预测的强度比平面层压板测试结果的拉伸强度高 4%,压缩强度高 11%。
我们确定飞机之间的最小安全间距以及空中交通管制系统的复杂性。考虑到领先飞机在其尾流中留下的涡流,一架飞机的尾部和下一架飞机的机头之间的距离应至少为 5.5 公里或 3.4 英里。相邻飞机之间的最小间距(无论是侧面、上方还是下方)应至少为 730 米或 0.45 英里。这些距离是使用伯努利原理计算的,该原理指出,流体(例如空气)的速度增加时,其内部压力会降低。由于飞机的速度非常高,机翼周围的压力很低。与伯努利因子相关的压力变化施加在面对的表面区域上,导致将飞机推到一起的力;这种力量可能会改变飞机的飞行模式。最后,如果两架飞机相向而行,它们之间必须有足够的空间来执行规避动作。我们发现需要 12 秒;在正常飞行速度下,这相当于 2.9 公里或 1.8 英里。我们将空域扇区的复杂性定义为在给定时间段内发生冲突的概率。为了确定复杂性,我们假设扇区是长方体,飞机以平行或反平行方向飞行。我们计算一架飞机在另一架飞机之后过早进入扇区的概率,或者两架飞机以反平行方向进入同一航道的概率。
进入 21 世纪,民航市场增长最快的细分市场是支线喷气式飞机 (RJ) 细分市场,旨在为区域城市对之间的直达航班提供服务。RJ 的典型座位数约为 50-80。100 座飞机细分市场与支线喷气式飞机相邻,但也许是最成问题的细分市场,因为它介于全球主要制造商占据的支线和全尺寸喷气式飞机运输细分市场之间。在这个容量细分市场中,可以生产 RJ 系列中最大的成员 (Dornier 928JET) 以及干线客机 (А-318、B-737-600) 的缩短衍生机型(容量较低的机型),也可以生产“真正的”100 座飞机(B-717-200、Tu-334-100、EMB-190-200)[1]。市场饱和对这一类别的任何新设计都提出了非常高的要求,不仅从技术和经济特性的角度,而且从对航空公司和乘客的吸引力的角度。在这种情况下,考虑非常规的飞机方案可以获得新的质量。俄罗斯公司 IRKUT- AviaSTEP 隶属于伊尔库茨克航空工业协会,生产著名的 Su-27/Su-30 和 Be-200 飞机,正在开发一个项目“111”,该飞机是全新的 100 座飞机,可在升降式机身布局中转换货舱/客舱(图 1)。这架飞机被巧妙地命名为“海豚”,因为它的前机身与海豚机头相似。从根本上讲,这是对过去的新技术方法
STORT 是 DLR 的一个项目,专注于在相对较长的时间内测试高超音速飞行(马赫数高于 8)的关键技术。该项目的总体目标是支持降低未来太空运输系统的成本,同时保持其高度可靠性。为此,未来发射系统所有阶段的可重复使用性是先决条件。对于第一级,8-10 马赫数似乎是最佳分级速度,这意味着需要开发和验证以这些速度返回第一级飞行的技术。因此,STORT 旨在实现代表可重复使用第一级在 8 马赫时进行这种高能再入飞行的运行条件,以支持优化和验证未来太空运输系统开发技术和模拟工具。因此,本文描述了火箭前体组件的设计、制造和集成,直至发射。此外,还概述了从热保护系统传感器收集的飞行数据。前机身热保护系统需要使用陶瓷基复合材料来保护机身免受飞行过程中的高热负荷。在本例中,热保护系统由 DLR 内部制造的 C/C-SiC 复合结构组成。主要元件是一个锥形机头元件和四个通过碳纤维纤维缠绕制造的薄壁壳体段。通过现场连接工艺,由 CMC 材料制成的整体固定支架永久固定在壳体上。连接热保护系统结构的底层前机身主结构由铝制成。
第 160 特种作战航空团(空降)目前运营两种型号的“支奴干”直升机:MH-47E“支奴干”是一种基于 CH-47D 机身的重型攻击直升机,但专为特种作战航空任务设计和制造,具有完全集成的航空电子子系统。该航空电子设备组合将冗余航空电子架构与双任务处理器、远程终端单元、多功能显示器和显示发生器相结合,以提高战斗生存力和任务可靠性。“Echo”型号还配备了用于飞行中加油的空中加油探头、外部救援绞车和两台 L714 涡轮发动机,配备全权限数字电子控制,可在炎热或高海拔环境条件下提供更多动力。MH-47G“支奴干”是一种基于 MH-47E 机身的重型攻击直升机。它保留了与“Echo”型号相同的基本机身、燃油系统、动力传动系统、发动机和性能标准,并进行了进一步的结构修改,包括带有加长机头的新驾驶舱和用于特种作战任务的技术增强。它是第一架配备陆军特种作战航空专用通用航空电子架构系统 (CAAS) 的第 160 架直升机。完全集成的数字 CAAS 航空电子设备包结合了升级的软件和硬件,包括有源矩阵液晶显示器 (LCD)、数据处理单元和控制显示单元,以提供高性能
位于布里斯托尔西南部的 White Ox Mead 草地农场带在半英里图上没有标记,但正如我们的指示所指出的,“它离 Radstock 目视报告点不太远”,其周围的特征在四分之一英里图上更清晰可见。我和 Jeremy 一起乘坐他的 Jodel Sicile 前往那里,在 QNH 上的高度为 1,500 英尺。我们从南边飞过弗罗姆(发音为“Froom”),沿着肯尼特和埃文运河的蜿蜒路线飞行。我将航图与我们的航向对齐,并扫描该区域,试图确定周围的特征,直觉地感觉到我们一定很近,这时 Jeremy 的手指从我的左眼旁飞过,他喊道:“它在那里!”确实,它就在我们的两点钟方向,在机头和翼尖之间。我们与跑道平行飞行,并倾斜到死侧位置,同时我扫描交通情况。跑道海拔 524 英尺,由 530x 30 米的广阔健康草地组成。从顺风方向看,它看起来像是山顶,像煎饼一样倾斜,但从更低处,在底部,以及在末端逐渐增加,24 的前半部分显然是上坡。上坡没有 Eggesford 那么大,但足以引起注意。橙色风向袋显示 8 节左右,从右侧 15°。滑过最近修剪过的、顶部有藤条的白色荆棘篱笆,杰里米带我们进入了一个特别平稳的三分球。我们减速而不需要刹车,在顶点掉头,滑向外面已经开放的机库
图 3-15.转弯时空速的变化....................................................................................................3-21 图 3-16.异常姿态—机头高......................................................................................................3-25 图 3-17.异常姿态—机头低......................................................................................................3-25 图 4-1.经度和纬度....................................................................................................................4-3 图 4-2.航路机场图例.............................................................................................................4-6 图 4-3.导航设备和通信框.............................................................................................4-8 图 4-4.空中交通服务和空域信息.............................................................................................4-9 图 4-5.仪表进近图.............................................................................................................4-12 图 4-6.程序和注意事项................................................................................................4-13 图 4-7。终端到达区的基本 T 设计.......................................................................................4-17 图 4-8。剖面图功能.......................................................................................................4-18 图 4-9。着陆最低限度.......................................................................................................4-20 图 4-10。空间内点进近.........................................................................................................4-23 图 4-11。远程高度计设置....................................................................................................4-24 图 4-12。不工作的组件.............................................................................................4-25 图 4-13。东西航向读数,使用外/内刻度.............................................................4-26 图 4-14。使用内刻度读取北航向......................................................................................4-27 图 4-15。从已知点绘制航向线.............................................................................................4-28 图 5-1。CPU-26A/P 计算器侧....................................................................................5-1 图 5-2。CPU-26A/P 计算机的计算器侧.............................................................................5-2 图 5-3。计算时间和距离 ................................................................................................5-3 图 5-4。计算速度 ..............................................................................................................5-3 图 5-5。短距离时间和距离 ................................................................................................5-4 图 5-6。预估出发时间超过一分钟 .............................................................................5-5 图 5-7。预估出发时间少于一分钟 .............................................................................5-5 图 5-8。加仑和磅的换算 .............................................................................................5-6 图 5-9。计算燃料消耗的时间 .............................................................................................5-7 图 5-10。所需燃料 .............................................................................................................5-7 图 5-11。燃油消耗率 ................................................................................................................5-8 图 5-12。真空速计算 ..............................................................................................................5-9 图 5-13。海里、法规和公里相关性 ......................................................................................5-10 图 5-14。内部刻度计算 ......................................................................................................5-10 图 5-15。真实高度计算 ......................................................................................................5-11 图 5-16。乘法 ................................................................................................................5-12 图 5-17。除法 ................................................................................................................5-12 图 5-18。将英尺每海里转换为英尺每分钟 ................................................................................5-13 图 5-19。CPU-26A/P 计算机的风侧......................................................................................5-14 图 5-20。航向和地速......................................................................................................5-15 图 5-21。确定未知风....................................................................................................5-16 图 5-22。确定最有利风的高度....................................................................................5-16 图 5-23。确定作用半径,第一部分................................................................................................5-17 图 5-24。确定作用半径,第二部分................................................................................................5-18 图 5-25。确定作用半径,第三部分................................................................................................5-18 图 6-1。风效应和地速.......................................................................................................6-2 图 6-2。风漂移......................................................................................................................6-2 图 6-3。风漂移角......................................................................................................................6-3 图 6-4。风校正角......................................................................................................................6-3 图 6-5。严重湍流中的仪表扫描(仪表板模糊)........................................................6-4 图 6-6。风切变中的下滑道偏差 ......................................................................................6-7 图 7-1。表面、空间和天波传播......................................................................................7-2 图 7-2。非常(高频)全向范围径向线 ......................................................................7-6 图 7-3。导航到站点 .............................................................................................................7-16 图 7-4。推头.........................................................................................................................7-17 图 7-5。拉尾.........................................................................................................................7-18 图 7-6。跟踪入站.............................................................................................................7-19
摘要:本研究旨在开发一种新方法,利用采伐机在作业伐木过程中记录的树干信息,基于遥感预测成熟林分的森林资源清查属性。参考样地由采伐机数据形成,使用两种不同的树木位置:全球卫星导航系统中的采伐机位置(XY H )和计算改进的采伐机头位置(XY HH )。研究材料包括位于芬兰南部的 158 个以挪威云杉为主的成熟林分,这些林分在 2015-16 年期间被砍伐。树木属性来自采伐机记录的树干尺寸。森林资源清查属性是为林分和为四种不同样地大小(254、509、761 和 1018 平方米)的林分生成的样地汇编而成的。建立了基于采伐机的森林资源清查属性与样地遥感特征之间的预测模型。获得了林分水平的预测结果,基部面积加权平均直径 (D g ) 和基部面积加权平均高度 (H g ) 对于所有模型替代方案几乎保持不变,相对均方根误差 (RMSE) 分别约为 10-11% 和 6-8%,偏差较小。对于基部面积 (G) 和体积 (V),使用任何一种位置方法,最多只能得到大致相似的预测结果,相对 RMSE 约为 25%,偏差为 15%。对于 XY HH 位置,G 和 V 的预测几乎与 sa 无关
摘要 2003 年 1 月 8 日,美国东部标准时间 (EST) 08:48,一架雷神比奇 1900D(B- 1900D),N233YV,由中西部航空公司 (AMW) 运营的 5481 航班,以全美航空快运的名义运营,在从北卡罗来纳州夏洛特的夏洛特道格拉斯国际机场 (CLT) 起飞爬升时坠毁。该航班的目的地是南卡罗来纳州的格林维尔-斯帕坦堡 (GSP)。机上有 2 名机组人员和 19 名乘客。所有乘客均受重伤,飞机因撞击和坠机后起火而损毁。飞机载重是按照中西部航空公司的程序计算的,飞机的重量和平衡也计算在限制范围内。飞行前检查、发动机启动、滑行和起飞滑跑均没有发生意外。抬轮后不久,飞机开始上仰,机组人员无法控制。飞机机头上仰超过 50°,空速下降。飞机滚动下降,最大倾斜角超过 130°,最大机头下俯约 40°。机组人员无法重新获得控制权,飞机在跑道东侧全美航空机库附近坠毁,距离起飞滑跑起点约 1.5 英里。回收的飞机残骸、数字飞行数据记录器 (DFDR) 信息、事故后采访和测试均表明,飞机升降机在维修期间安装不当。此次维修后,飞机
旋翼 AH-64 阿帕奇长弓直升机提供昼夜和恶劣天气攻击直升机能力。阿帕奇是美国陆军的主要攻击直升机。它是一种反应迅速的机载武器系统,可以近距离和纵深作战,摧毁、扰乱或延缓敌军。阿帕奇飞机有四个版本:最初的 AH-64A 阿帕奇和阿帕奇长弓 Block I、II 和 III。AH-64A 阿帕奇于 1984 年首次进入服役。该飞机专为在世界各地作战和生存而设计。它配备了目标捕获指示瞄准器和飞行员夜视传感器,允许其两名机组人员在黑暗和恶劣天气下导航和攻击。阿帕奇的主要任务是使用“地狱火”导弹摧毁高价值目标。它还能够使用 30 毫米 M230 机头自动炮和 Hydra 70 火箭弹,对各种目标都具有致命性。阿帕奇的最大速度为 145 节。它的最大总重量范围为 240 海里(A 型)和 230 海里(D 型),并具有使用内部和外部油箱扩展范围的能力。阿帕奇拥有全套飞机生存设备,能够承受关键区域 23 毫米以下子弹的打击。阿帕奇武器包括地狱火导弹(RF/SAL 版本)、2.75 英寸火箭弹(所有版本)和 30 毫米 HEI 弹。AH-64D 长弓 Block II 是通过新生产和再制造 AH-64A 飞机的组合部署的。AH-64D 采用了长弓火控雷达 (FCR),能够在白天或夜晚、恶劣天气和战场模糊条件下使用