通常使用拼接来保持机翼蒙皮的空气动力学表面整洁。机翼是飞机产生升力的最重要的部件。机翼的设计因飞机类型和用途而异。翼盒有两个关键接头,即蒙皮拼接接头和翼梁拼接接头。内侧和外侧部分的顶部和底部蒙皮通过蒙皮拼接连接在一起。内侧和外侧的前翼梁和后翼梁通过翼梁拼接连接在一起。蒙皮承受机翼中的大部分弯曲力矩,而翼梁承受剪切力。本研究对机翼蒙皮的弦向拼接进行了详细分析。拼接被视为在机翼弯曲引起的平面内拉伸载荷作用下的多排铆钉接头。对接头进行了应力分析,以预测旁路载荷和轴承载荷引起的铆钉孔处应力。应力是使用有限元法在 PATRAN/NASTRAN 的帮助下计算的。疲劳裂纹将出现在机身结构中高拉伸应力的位置。此外,研究了这些位置总是高应力集中的位置。结构构件的寿命预测需要一个疲劳损伤累积模型。各种应力比和局部的应力寿命曲线数据
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。
这项工作调查了较高纵横比翼的潜力,以提高远程飞机的燃料效率。高纵横比机翼的主要特征是讨论的,并提出了航空结构机翼优化的过程。基于尾边控制表面偏转的自适应机翼技术,以实现最佳的升力分布,从而最大程度地减少巡航战斗中的阻力并最大程度地减少操纵流的负载减少,并由高级结构技术通过增加的应变易于应变和后式结构技术来补充。在优化过程中,使用高实现模拟方法来确定跨性别巡航流中的权限,机翼上的机翼上的载荷和复合机翼盒的质量。在所有流动条件下都考虑了静态气动弹性效应。最小化三个典型战斗任务的燃油消耗代表了目标函数。考虑控制表面和飞机装饰的几何整合。该过程的应用以优化机翼平面形,扭曲分布和控制表面变化构成了本出版物的主要部分。结果显示了12个顺序的最佳机翼纵横比。将纵横比的进一步增加到13。5显示空气动力学性能和由此产生的燃料消耗没有进一步改善。
第 10 章 – 增强型机翼拆卸支持 F-16 10-1 结构寿命管理 1 10.1 简介 10-1 10.2 爱尔兰皇家空军 F-16 机队的结构寿命管理 10-1 10.2.1 历史 10-1 10.2.2 SLM 框架 10-1 10.2.3 国内 SLM 活动示例 10-2 10.2.3.1 单独飞机跟踪 10-2 10.2.3.2 NDI 技术评估 10-4 10.2.3.3 事故调查 10-5 10.2.3.4 新紧固件系统评估 10-6 10.2.3.5 拆卸检查 10-8 10.3 增强型 F-16 15 段机翼拆卸 10-9 10.3.1 F-16 Block 15 机翼拆卸检查 @ 4,200 FH 10-10 10.3.2 F-16 Block 15 机翼损伤增强试验及后续拆卸 10-13 10.3.2.1 载荷引入 10-14 10.3.2.2 试验设置 10-14 10.3.2.4 标记载荷 10-18 10.3.2.5 试验活动 10-19 10.3.2.6 试验期间的明显疲劳裂纹 10-20 10.3.2.7 WDET 后拆卸检查 10-21 10.3.2.8 定量断口分析 10-22 10.3.2.9 RNLAF F-16 Block 15 机翼的经济使用寿命 10-26 10.4 结论 10-27 10.5 展望 10-28 10.6 参考文献 10-29
第 10 章 – 增强型机翼拆卸支持 F-16 10-1 结构寿命管理 1 10.1 简介 10-1 10.2 爱尔兰皇家空军 F-16 机队的结构寿命管理 10-1 10.2.1 历史 10-1 10.2.2 SLM 框架 10-1 10.2.3 国内 SLM 活动示例 10-2 10.2.3.1 单独飞机跟踪 10-2 10.2.3.2 NDI 技术评估 10-4 10.2.3.3 事故调查 10-5 10.2.3.4 新紧固件系统评估 10-6 10.2.3.5 拆卸检查 10-8 10.3 增强型 F-16 15 段机翼拆卸 10-9 10.3.1 F-16 Block 15 机翼拆卸检查 @ 4,200 FH 10-10 10.3.2 F-16 Block 15 机翼损伤增强试验及后续拆卸 10-13 10.3.2.1 载荷引入 10-14 10.3.2.2 试验设置 10-14 10.3.2.4 标记载荷 10-18 10.3.2.5 试验活动 10-19 10.3.2.6 试验期间的明显疲劳裂纹 10-20 10.3.2.7 WDET 后拆卸检查 10-21 10.3.2.8 定量断口分析 10-22 10.3.2.9 RNLAF F-16 Block 15 机翼的经济使用寿命 10-26 10.4 结论 10-27 10.5 展望 10-28 10.6 参考文献 10-29
第 10 章 – 增强型机翼拆卸支持 F-16 10-1 结构寿命管理 1 10.1 简介 10-1 10.2 爱尔兰皇家空军 F-16 机队的结构寿命管理 10-1 10.2.1 历史 10-1 10.2.2 SLM 框架 10-1 10.2.3 国内 SLM 活动示例 10-2 10.2.3.1 单独飞机跟踪 10-2 10.2.3.2 NDI 技术评估 10-4 10.2.3.3 事故调查 10-5 10.2.3.4 新紧固件系统评估 10-6 10.2.3.5 拆卸检查 10-8 10.3 增强型 F-16 15 段机翼拆卸 10-9 10.3.1 F-16 Block 15 机翼拆卸检查 @ 4,200 FH 10-10 10.3.2 F-16 Block 15 机翼损伤增强试验及后续拆卸 10-13 10.3.2.1 载荷引入 10-14 10.3.2.2 试验设置 10-14 10.3.2.4 标记载荷 10-18 10.3.2.5 试验活动 10-19 10.3.2.6 试验期间的明显疲劳裂纹 10-20 10.3.2.7 WDET 后拆卸检查 10-21 10.3.2.8 定量断口分析 10-22 10.3.2.9 RNLAF F-16 Block 15 机翼的经济使用寿命 10-26 10.4 结论 10-27 10.5 展望 10-28 10.6 参考文献 10-29
s Grigg,C A Featherston,M Pearson和R Pullin Cardiff工程学院,加的夫大学,皇后建筑,游行,加的夫,CF24 3AA摘要。声发射(AE)是一种原位结构性健康监测(SHM)技术,在该技术中,由于裂纹生长而产生的超声波监测结构。将AE应用于飞机和其他复杂结构时,AE的主要挑战是,波传播会受到加强剂,孔,厚度变化和其他复杂性的显着影响。这降低了基于奇异传播波速的传统源位置技术的准确性。Delta-T方法通过映射结构并考虑这些更改来实现更高级别的准确性。在这项工作中,AE监视设备安装在铝空客A320机翼的一部分上。位置试验显示,与商业标准技术相比,人工HSU-Nielson来源的Delta-T技术将平均误差从85mm提高到23mm。在疲劳下进行测试证明了检查3D结构(由于多个信号路径)具有显着水平的背景噪声时遇到的挑战。在结构中鉴定出的两个裂纹中,其中第一个被成功地检测到并找到,而另一个由于高机噪声和无代表性的负载而错过了。
第 10 章 — 为支持 F-16 而进行的增强型机翼拆卸 10-1 结构寿命管理 1 10.1 简介 10-1 10.2 爱尔兰皇家空军 F-16 机队的结构寿命管理 10-1 10.2.1 历史 10-1 10.2.2 SLM 框架 10-1 10.2.3 国内 SLM 活动示例 10-2 10.2.3.1 单独飞机跟踪 10-2 10.2.3.2 NDI 技术评估 10-4 10.2.3.3 事故调查 10-5 10.2.3.4 新紧固件系统评估 10-6 10.2.3.5 拆卸检查 10-8 10.3 增强型 F-16 15 段机翼拆卸 10-9 10.3.1 F-16 Block 15 机翼拆卸检查@4,200 FH 10-10 10.3.2 F-16 Block 15 机翼损伤增强试验及后续拆卸 10-13 10.3.2.1 载荷引入 10-14 10.3.2.2 试验设置 10-14 10.3.2.4 标记载荷 10-18 10.3.2.5 试验活动 10-19 10.3.2.6 试验期间的明显疲劳裂纹 10-20 10.3.2.7 WDET 后拆卸检查 10-21 10.3.2.8 定量断口分析 10-22 10.3.2.9 RNLAF F-16 Block 15 机翼的经济使用寿命 10-26 10.4 结论10-27 10.5 展望 10-28 10.6 参考文献 10-29
摘要:在开源 CFD 工具箱 OpenFOAM 中开发了 3D 结冰模拟代码。采用混合笛卡尔/贴体网格划分方法来生成复杂冰形周围的高质量网格。求解稳态 3D 雷诺平均纳维-斯托克斯 (RANS) 方程以提供绕翼的集合平均流动。考虑到液滴尺寸分布的多尺度特性,更重要的是为了表示过冷大液滴 (SLD) 不太均匀的特性,实现了两种液滴跟踪方法:为了提高效率,采用欧拉方法跟踪小尺寸液滴(50 µ m 以下);采用随机采样的拉格朗日方法跟踪大液滴(50 µ m 以上);在虚拟表面网格上求解表面溢流的传热;通过 Myers 模型估计冰积聚;最后,通过时间推进预测最终的冰形。由于实验数据有限,分别使用欧拉法和拉格朗日法对二维几何的三维模拟进行验证。事实证明,该代码在预测冰形方面是可行的,并且足够准确。最后,给出了 M6 机翼的结冰模拟结果,以说明完整的三维功能。
摘要 飞机表面可能发生气动弹性不稳定性,导致疲劳或结构故障。颤振是一种气动弹性不稳定性,会导致结构自激发散振荡行为。经典的二自由度颤振是弯曲和扭转振动模式的组合。已经开发了一种柔性支架系统,用于风洞中刚性机翼的颤振试验。这种柔性支架必须提供一个明确定义的二自由度系统,刚性机翼在该系统上遇到颤振。在进行任何风洞颤振试验之前,进行了实验模态分析 (EMA) 和有限元模型分析 (FEM),以验证固有频率和模式。使用拉格朗日方程开发了系统的运动方程。通过三种不同的方法确定临界颤振速度:稳定流的 p 方法、经典颤振分析和非稳定流的 k 方法,并与实验结果进行了比较。关键词:气动弹性、颤振、柔性结构、风洞试验、实验模态分析、有限元模型分析。1. 简介气动弹性是指研究气流中弹性结构变形与由此产生的气动力之间相互作用的研究领域。气动弹性研究主要有两个领域。首先,静态气动弹性涉及弹性力和气动力之间的相互作用,忽略