机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
用于解决复杂物理问题的机器学习(ML)技术的整合越来越被认为是加快模拟的有前途的途径。但是,评估ML衍生的物理模型在工业环境中的采用构成了重大挑战。本竞赛旨在促进创新的ML方法来应对身体挑战,利用我们最近引入的统一评估框架,称为学习工业物理模拟(LIPS)。建立在2023年11月至2024年3月1日举行的初步版本上,该迭代以良好的物理应用为基础的任务为基础:使用我们建议的Airfrans数据集,翼型设计模拟。竞争基于各种标准评估解决方案,包括ML准确性,计算效率,分布外部性能和遵守物理原理。值得注意的是,这项竞争代表了探索ML驱动的替代方法的开创性努力,旨在优化物理模拟中计算效率和辅助性之间的权衡。托管在Codabench平台上,比赛为所有参与解决方案提供了在线培训和评估。
由于其起飞和着陆能力(如 STOVL 或 V/STOL)而很有前途。一个经验教训是,升力风扇飞机因多种原因而很有前途,例如 (i) 短距或垂直起飞和着陆,(2) 近终端起飞和进近模式,(3) 上升和离开飞行性能,(4) 机动性,(5) 设计权衡,例如机翼设计用于巡航并且不受起飞和着陆的影响,(5) 地面设施的优势,例如滑跃起飞,(6) 总体系统节省,例如不需要航空母舰转向风中,以及 (7) 更多其他。
当前运输飞机的固定弯度机翼设计用于实现最佳巡航升力系数,并通过阶梯式巡航爬升飞行剖面实现高效飞行。未来的污染立法可能会禁止此类飞行,并且可能需要采用其他升力/阻力优化方法。固定弯度几何形状对于使用通用机翼的客机系列的开发也可能是不利的。机翼对于中程衍生飞机可能是最佳的,但对于较大和较小的变体则不是。一种解决方案是使用可变弯度襟翼用于巡航以及起飞和降落。本文将介绍克兰菲尔德大学在该领域的 15 年相关研究计划。这些研究表明,在某些情况下,此类系统可以带来成本效益,并提供操作灵活性,这是可变弯度概念的主要驱动力。
这些智能材料对于健康和结构监测系统至关重要。可以通过在混凝土结构或压电桥中使用嵌入式传感器来获得有关结构完整性和任何损害的实时信息,这些传感器可以识别压力或应变的变化。这种积极的监视降低了维护成本,延长了基础设施的寿命,并有助于避免灾难性的失败。由于其轻巧的性质和对极端压力的弹性,因此在航空航天制造中使用了智能材料。执行机翼设计以最大程度地提高燃油效率和空气动力学性能的执行器,例如使用形状内存合金。此外,通过智能材料降低飞机的噪音和振动使乘客的安全性和舒适性降低了主动振动控制技术。
摘要:本文旨在指出机身腐蚀的一些特性、外力对飞机蒙皮元素的影响以及它们对结构完整性的影响。腐蚀过程通常与飞机结构元素的疲劳有关,这是由许多因素引起的,例如载荷类型、材料性质、腐蚀环境等。本文的重点不是腐蚀过程,而是飞机机翼设计元素特有的载荷系数及其对关键结构元素腐蚀的影响。机翼腐蚀被认为是环境影响蒙皮和连接部件(铆钉、螺钉和焊接接头)受损表面保护的结果,这种影响是由机翼的静态和动态应力以及整体上各个结构元素的相互作用引起的。材料的疲劳进一步增强了各个结构元素的运行动态性。及早发现腐蚀过程对于飞机的整体安全通常至关重要。本文提出的建议是为了改进工作体系,确保飞机在抗腐蚀损伤方面的安全运行。
本文介绍了欧盟资助的研究项目 AGILE(2015 – 2018)中针对整体飞机设计的多学科设计和优化 (MDO) 领域的研究活动中所进行的方法研究。在 AGILE 项目中,来自欧洲、加拿大和俄罗斯的 19 个工业、研究和学术合作伙伴组成的团队正在共同开发下一代 MDO 环境,旨在大幅降低飞机开发成本和上市时间,从而生产出更便宜、更环保的飞机。本文介绍了 AGILE 项目结构,并描述了第一年取得的成果,这些成果催生了参考分布式 MDO 系统。然后,重点介绍了第二年研究的各种新型优化技术,所有这些技术都旨在简化复杂工作流程的优化,这些工作流程的特点是学科相互依赖性高,设计变量多,涉及多层次流程和多合作伙伴协作工程项目。本文针对传统飞机引入并验证了三种优化策略。首先,在机翼设计问题上使用基于纳什博弈和遗传算法的多目标技术。然后对发动机舱设计进行深入研究,使用基于代理的优化器来解决单目标问题。最后采用稳健方法来研究参数不确定性对发动机舱设计过程的影响。这些新功能
2003 年协和式飞机的停飞也意味着超音速商业运输的终结。然而,各种公司和初创公司(如 Aerion Corporation 和 Boom Technology)以及研究机构(如 NASA)仍然相信超音速商业运输的概念,并在过去几年中一直在开发飞机和技术,试图使其在技术和经济上可行。为了使超音速商业运输可行,研究重点必须放在通过大幅提高燃油效率、大幅减少污染物排放以及降低产生的噪音(无论是在机场附近还是在超音速时)来最大限度地减少对环境的影响。作为 2016/17 年 NASA/DLR 联合航空设计挑战赛的一部分,一个学生团队将提交一架概念飞机设计,该飞机将于 2025 年投入使用,并能满足如此严格的标准。这项任务以跨学科的方式进行,首先对现有技术和可用技术进行全面分析,同时考虑可能任务的经济性。然后对机身、机舱和机翼设计方面的适当飞机配置进行研究,然后进行彻底的空气动力学设计和分析。最后介绍了飞机的性能及其与适当参考飞机的比较。整个设计基于标准