摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间的整流罩区域的视觉上可区分的曲线。介绍了 B-29 和 B-737 的两个案例研究,展示了如何近似机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,将增强飞机概念设计和飞行性能优化研究。
摘要。确定用于油棕收获预测应用的无人机系统配置是实现种植园产量最大化的重要一步。本文的目的是展示如何使用无人机系统生成可用于预测作物的高分辨率图像。研究分为两个阶段:无人机系统配置分析和数字图像处理以预测作物。无人机系统配置分析包括机身、推进器、航空电子设备和地面控制站。机载系统使用由 Pixhawk 航空电子设备、电动机和 20.2 兆像素数码相机控制的 X-8 机身。无人机系统用于在北苏门答腊省 Labuhan Batu Utara 的一个 6 年生油棕种植园上生成高分辨率数字图像。该无人机系统可生成高分辨率数字图像,可用于计算植物数量。然后将此特定区域中的植物数量用作预测作物的输入。6 年生油棕种植园的估计产量平均为每公顷每年 50.5 吨。这个结果大于棕榈油种植园管理公司的估计结果,即每公顷每年 23 吨。
我们的规划团队将为您的特定要求找到正确的答案。例如,超长飞机的门内机身调整或垂直尾翼的大型堆叠门。为了快速通过交通,我们集成了额外的门和无门槛的通行门。对于没有眩光的明亮工作区域,我们使用自己生产的玻璃纤维覆层来降低照明费用。
A*STAR 航空航天联盟成立于 2007 年,其成员包括许多全球领先的机身和发动机制造商、零部件和专业材料公司以及本地企业。该联盟开展竞争前研究,以寻找应对航空航天行业未来挑战的解决方案。欲了解更多信息,请访问:https://www.a-star.edu.sg/aerospace/Consortium.aspx
航空结构力学(AM)维护飞机机身和结构部件、飞行表面和控制装置、液压和气动控制和驱动系统和机构、起落架系统、空调、增压、视觉改善、氧气和其他公用系统、出口系统(包括座椅和座舱盖弹射系统和部件);制造和修理金属和非金属材料;监督机身工作中心的运行;维护飞机金属和非金属结构,包括机身、固定和可移动飞行表面、尾梁、门、面板、甲板、尾翼和座椅(弹射座椅除外);维护飞行控制装置和相关机制;维护液压动力存储和分配系统,包括主(主要和次要)、辅助(公用)和应急系统;维护液压驱动子系统;维护起落架系统,包括车轮和轮胎、刹车和应急系统;维护气动动力、储存和分配系统;维护升降机和绞车、机翼和尾翼折叠系统;维护发射和拦阻装置系统;执行液压部件维修和测试;并对飞机进行每日、特殊、每小时、无损和条件检查。
百万美元 基地级可修复物品 机身 N/A $2,179 N/A $2,299 N/A $2,825 N/A $526 航空发动机 N/AN/AN/AN/AN/AN/AN/AN/A 其他导弹 N/A $18 N/A $33 N/A $35 N/A $1 通讯设备 N/AN/AN/A $18 N/A $19 N/A $1 空间 N/A $1 N/AN/AN/AN/AN/AN/A 支援设备 N/AN/AN/A $6 N/A $7 N/A $1 战斗支援 N/A $15 N/A $55 N/A $57 N/A $2 基地支援 N/A $7 N/A $2 N/A $2 N/A/A 空中作业 N/A $23 N/A $16 N/A $17 N/A $1 全军支持 N/A $12 N/A $38 N/A $18 N/A $-20 空运业务 N/AN/AN/A $1 N/A $1 N/AN/A 不动产维护 N/AN/AN/AN/AN/AN/AN/AN/AN/A 培训 N/A $2 N/AN/AN/A $1 N/AN/A 总计 $2,258 $2,468 $2,980 $512 消耗品 机身 N/A $1,056 N/A $1,041 N/A $1,066 NA $25 飞机发动机 N/AN/AN/AN/AN/AN/AN/AN/AN/A 其他导弹 N/AN/AN/AN/AN/AN/AN/AN/AN/A 通讯设备N/AN/AN/AN/AN/AN/AN/AN/A 其他杂项 N/A $189 N/A $300 N/A $423 N/A $123 总计 $1,246 $1,342 $1,489 $148
A320 系列经过不断演变,已形成了四种主要机型:A318、A319、A320 和 A321。这些机型采用通用的机身设计,均采用标准的六排经济舱配置,长度不同,可容纳 107 至 185 个座位。座位尺寸范围与 737NG 系列相似,不过 A321 比 737-900ER 多出五个座位。该机身以乘客舒适度著称,座椅比其 737/757 竞争对手宽 1 英寸。不过,A320 系列的主要特点是:电传操纵 (FBW) 飞行控制系统;通用驾驶舱和单飞行员等级;以及在两种或多种机型中使用通用的发动机类型和可旋转部件。这些特点提供了高度的通用性,从而降低了与机组人员和维护相关的运营成本。FBW 飞行控制系统和通用驾驶舱不仅允许四种机型之间的单一类型评级,而且还允许与具有 FBW 系统和相同或类似驾驶舱的其他空客机型进行跨机组资格认证。这些技术特点和广泛的
摘要 — 飞机检查的可靠性对飞行安全至关重要。飞机结构的持续适航性很大程度上取决于经过培训的检查人员对小缺陷的目视检测,这些检查任务昂贵、关键且耗时。为此,无人机 (UAV) 可用于自主检查,只要能够在绕目标飞行时定位目标并纠正位置即可。这项工作提出了一种解决方案,用于在近距离自主绕机身飞行以进行目视检查任务时检测飞机相对于无人机位置的姿态。该系统的工作原理是处理来自机载 RGB 相机的图像,将传入的帧与已知机身表面位置的自然地标数据库进行比较。该解决方案已在真实的无人机飞行场景中进行了测试,显示出其在高精度定位姿态方面的有效性。所提出方法的优势具有工业意义,因为我们消除了现有技术解决方案中存在的许多限制。索引词——视觉检查,自我定位,3D姿态,地标检测
图 1:NACA 空中数据臂设计,在 UTSI Cessna 210 右翼尖配备流动角叶片。 .............................................. 1 图 2:惯性(东北向下)坐标系。来源:USAF TPS [6]。 .............................................................................. 5 图 3:机身固定坐标系。来源:USAF TPS [6]。 ............................................................................................. 6 图 4:流动角参考系。u、v、w 分别是机身固定参考系上 x、y、z 方向的速度矢量。来源:NASA [9] ......................................................................................................... 8 图 5:X-Z 轴上的攻角、俯仰角和飞行路径角视图。来源:波音航空杂志 [11]。 ... 9 图 6:不同情况下攻角和俯仰角的差异 [12]。 ............................................................................. 9 图 7:由于升力要求,平飞中的攻角会发生变化 [12]。 ................................................................ 9 图 8:估算 Oswald 效率因子的方法。来源:Roskam [15]。 .............................................................. 16 图 9:阻力系数随马赫数变化的典型变化。来源:Kroo [16]。 .............................................................. 18 图 10:烟气风洞试验中机翼上方的上洗流。来源:Babinksy [17]。 ..............................................................
摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同的设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间整流罩区域的视觉上可区分的曲线。介绍了两个关于 B-29 和 B-737 的案例研究,展示了如何近似其机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与其原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,以增强飞机概念设计和飞行性能优化研究。