抽象的蛇机器人由于其特殊的身体和步态而变得富裕。但是,由于其复杂的模型,很难计划在多孔环境中进行运动。为了解决这个问题,这项工作研究了一种基于学习的运动计划方法。为可行的路径计划,并提出了一种修改的深Q学习算法,提出了一种弗洛伊德移动的平均算法,以确保蛇机器人通过的路径的平稳性和适应性。一种改进的路径积分算法用于解决步态参数以控制蛇机器人以沿计划的路径移动。为加快参数的训练,设计了一种结合串行训练,并行培训和经验重播模块的策略。此外,我们设计了一个运动计划框架,包括路径计划,路径平滑和运动计划。进行了各种模拟,以验证所提出的算法的效果。
摘要。在本文中,提出了针对任意单Qutrit状态的联合远程准备计划。首先,我们介绍了如何以密度运算符的形式在理想环境中远程准备任意的单Qutrit状态。然后,我们研究了与Weyl oberators相对应的四种典型类型的3D Pauli样噪声的影响:Trit-plip,T型相频率,TRIT相 - 频率和在理想环境中的T-Depolarising。对于每种类型的噪声,我们计算和分析了有限度的结果。结果表明,当考虑到trit-plip,trit-phase频率和t-偏度噪声时,实现与噪声因子和目标状态的所有系数有关。然而,当考虑t阶段频率噪声时,实现仅与目标态的噪声因子和振幅系数有关。
人类能够通过使用各种传感器和学习的行为在复杂的环境中导航,从而使他们能够做出复杂,聪明的决策。为了解决机器人在模拟人类决策时可能在复杂环境中可能面临的潜在问题,我们提出了智能控制架构,以允许自主代理在没有大量人类干预的情况下进行操作。使用深度学习(DL)作为工具有助于从传感器数据中生成映射以控制输入,从而可以在复杂环境中为代理提供自主映射和导航。许多类似的平台使用宽传感器套件在操作过程中收集大量各种数据示例,我们将使用多模式深网络将其利用,以将传感器输入映射到控制输出。
a 印度阿姆劳蒂 Mardi 路 Rajendra Gode 药学院药物化学系;b 沙特阿拉伯利雅得伊玛目穆罕默德伊本沙特伊斯兰大学理学院化学系;c 沙特阿拉伯莫哈伊尔阿西尔哈立德国王大学科学与艺术学院化学系;d 马来西亚双威城双威大学医学与生命科学学院;e 伊拉克埃尔比勒 Tishk 国际大学药学院药物化学系;f 沙特阿拉伯阿尔哈吉 Prince Sattam Bin Abdulaziz 大学药学院药理学与毒理学系;g 印度兰契 Birla 理工学院药物科学与技术系;h 沙特阿拉伯利雅得 AlMaarefa 大学医学院基础医学系
5000 NSC-35/Ser:NU 106 致:见分发 主题:课程 30000“复杂环境下的北约身份情报分析员”邀请函 2024 年 2 月 12 日至 16 日 日期:2023 年 10 月 11 日 参考:NMIOTC 工作计划 (NPOW) 2024 1. NMIOTC 在盟军转型司令部 (ACT) 的支持和指导下设计了“复杂环境下的北约身份情报分析员”课程,以便最好地使北约分析员具备理解人文地形和拒绝威胁身份匿名的能力,涵盖包括海上在内的全方位军事行动。 NMIOTC 很高兴邀请北约国家参加该主题课程,该课程将于 2024 年 2 月 12 日至 16 日在希腊苏达湾中心举行。2. 该课程旨在培养能够利用身份情报来增强分析和生产的北约分析员,为北约联合作战区 (JOA) 的指挥决策提供信息。这包括身份识别(发现新的威胁行为者)、解决(区分敌友)和归因(将人与地点或事件联系起来)等关键技能。上述课程还旨在提供一个分享经验教训和开发分析技术的场所。3. 目标受众包括来自北约国家和瑞典的军官和士官(OR-5 至 OF-3)以及同等级别的民事情报人员。4. 该课程以英语授课。不提供与其他语言的翻译。参加课程需要达到以下英语熟练程度标准:听力-专业(3)、口语-实用(2)、阅读-专业(3)、写作-实用(2)。(STANAG 6001)5. 该课程标记为“北约机密可发布给瑞典”。所有参与者在参加课程前必须出示相应的安全许可。NMIOTC 根据北约标准实施安全安排和规定。
摘要:手性氮杂环丙烷是天然产物和各种重要靶分子中发现的重要结构基序。它们是合成手性胺的多功能构建块。虽然催化剂设计的进步使得对映选择性氮杂环丙烷活化烯烃的方法成为可能,但简单且丰富的烷基取代烯烃带来了重大挑战。在这项工作中,我们介绍了一种利用平面手性铑茚基催化剂促进未活化烯烃对映选择性氮杂环丙烷化的新方法。这种转化表现出显着程度的功能基团耐受性,并显示出优于活化烯烃的优异化学选择性,从而提供了多种对映体富集的高价值手性氮杂环丙烷。计算研究揭示了一种逐步氮杂环丙烷化机制,其中烯烃迁移插入起着核心作用。该过程形成了有张力的四元金属环,并作为整个反应中的对映体和速率决定步骤。
摘要糖尿病是一种与病理有关的疾病,例如慢性炎症,神经病和疼痛。Claisen -Schmidt凝结反应的合成旨在获得培养基到高屈服的衍生物。进行合成的新chalcone分子的研究旨在旨在对芳族环的结构操纵,以及杂环替换环,以及通过合成结构与其他分子的化学反应结合,以增强生物学活性。对成年斑马鱼中的抗伤害感,抗炎和降血糖作用进行了合成和评估。除了减少伤害性行为外,Chalcone(40 mg/kg)还逆转了治疗后诱导的急性和慢性高血糖症,并减少了Zebrafish的Carrageenan诱导的腹部水肿。它还对J774A.1细胞中的NO产生产生抑制作用。与对照组相比,慢性高血糖后产生的氧化应激和腹水肿诱导后,chalcone显着降低。进行了用COX -1,COX-2和TRPA1通道酶对Chalcone的分子对接模拟,并表明Chalcone对Cox-1酶的亲和力较高,并且与TRPA1通道具有4个相互作用。chalcone还显示出良好的药代动力学特性,如ADMET所评估。
图1。(a)人类SEH(PDB ID:3ANS)的X射线结构的亚基A,具有非共价外消旋的4-氰基N-(Trans-2-苯基甲基丙烷基)苯甲酰胺抑制剂CPCB。(b)非共价相互作用图(2D)在配体结合袋中显示抑制剂和蛋白质之间的显着接触。以绿色显示了氢键结合的催化三合会(ASP-335,Tyr-383,Tyr-466)。(c)苯甲酰胺抑制剂(青色球和棍子模型)的位置,在人SEH的疏水结合袋中。蛋白质表面从高疏水性(棕色)到极性(蓝色)和钥匙袋残基(标记)以圆柱格式呈现。该图是由3AN的X射线结构坐标创建的[12]。
癌症是最常见的死亡原因之一,给全社会带来了沉重的经济和医疗负担。随着分子生物学和细胞遗传学的发展,发现肿瘤发生发展的分子机制非常复杂,涉及染色体异常、致癌基因扩增、抑癌基因缺失、生长因子及其受体的上调、肿瘤相关信号转导通路的激活等[1-3]。为了有效治疗患者的癌症,研究人员寻求具有高选择性、小副作用甚至能够克服耐药性的新型抗癌药物。抗癌药物研发现已从细胞毒药物发展到靶向药物和纳米药物[4]。靶向药物和纳米药物的抗癌作用可以通过多种途径介导,从而产生显著的效果[5-9]。杂环化合物由碳原子和非碳原子组成,是许多具有药理和生物学价值的化学物质的重要结构基础。杂环化合物的研究是有机化学的重要组成部分,广泛应用于许多行业,尤其是医药行业[10-13]。目前,杂环化合物是多种药物的主要活性成分,包括镇痛药、抗炎药、抗结核药、抗高血压药、抗抑郁药,甚至抗癌药[14-17]。近几十年来,出现了许多新型杂环靶向药物。纳米医学是一个相对较新的医学研究领域。它涉及使用纳米技术解决医疗问题,在精准医疗方面具有巨大的潜力[18-20]。纳米医学在癌症诊断和治疗中的应用
动态环境中的量子发射器的能级可能会随着波动的浴液而不受控制地漂移。这会导致发射和/或吸收光谱分布在很宽的频率范围内,并对各种应用构成挑战。我们考虑一个量子发射器,它处于一个能级改变的环境中,因此发射频率由给定平均值周围的高斯随机分布表示,给定标准差和相关时间。我们研究了该系统在受到周期性有限宽度π脉冲序列影响时的发射光谱。我们表明,这种外部场协议可以通过将大部分发射光谱重新聚焦到脉冲载波频率上来有效克服该系统中的光谱扩散。我们进一步考虑了不同噪声环境中的两个这样的发射器,发现通过在两个系统上应用有限宽度脉冲序列可以使双光子干涉操作变得高效。最后,我们展示了一组名义上相似的发射器,每个发射器都有不同的环境,因此发射频率会随机偏移,其整体发射光谱可以重新聚焦到具有明确中心峰的线形上,该峰的线宽与单个孤立无噪声发射器的线宽相同,而这些发射器各自具有不同的环境,因此发射频率会随机偏移,其整体发射光谱本来会根据随机分布不均匀地加宽。这些结果表明,对于这种特定的噪声环境模型,外部控制协议可以保护光谱特性,这里用有限宽度脉冲的周期性序列来表示。