本文档概述了2024 SME权重,该权重将用于响应CDP的2024 SME问卷的组织评分类别。请参阅下面的权重摘要表,以获取特定分解。建议在阅读加权“摘要表”之前阅读2024 SME评分简介文档。有关哪些问题的分解属于哪个评分类别,请参阅SME 2024评分类别映射文档。评分类别是主题的问题分组。它们是2024个问卷模块的子组,并且在所有部门之间都是一致的。权重仅适用于中小企业管理和中小企业领导水平的评分类别。由于这是中小企业的第一年,因此中小企业领导水平未在2024年进行评分,因为这种权重在2024年不会在此级别进行。权重反映了在CDP中小型企业问卷边界内每个类别的相对重要性和可用的评分标准。
本课程将重点介绍控制工程材料微观结构的基本和高级概念,并将这些概念与工程材料的最终物理特性联系起来。本课程分为三个模块:1) 金属,2) 陶瓷和玻璃,3) 聚合物和复合材料。每个模块首先回顾描述原子键合和微观结构的概念,并将微观结构与特定类别材料的物理特性联系起来。然后,学生将学习影响材料性能的制造技术,包括材料成型、后处理热处理和表面处理。每个模块都以选定的案例研究和/或详细的材料相关问题的分析结束
摘要 - 生成的对抗网络(GAN)是一种能力的生成技术,但甘斯经常面临训练不稳定的挑战。网络体系结构在确定gan的最终性能中起着重要作用,但是设计精细的体系结构需要深入的领域知识。本文旨在通过通过神经体系结构搜索(NAS)来搜索高性能的架构来解决此问题。所提出的方法称为Ewsgan,基于重量共享,由两个步骤组成。首先,我们根据重量共享培训了一条发电机的超级网。然后,采用多目标进化算法从超级网中提取子网,并且通过直接从超级网遗传的权重进行健身评估,并且对候选网络结构的帕累托前部进行了搜索。两种策略用于稳定发电机的超级网的训练:公平的单路抽样策略和丢弃策略。实验结果表明,我们的方法设计的架构达到了FR´Echet Inception距离(FID)为9.09,而在CIFAR-10上获得了8.99的成立分数(IS),这是NAS-GANS领域的新最先进的。在STL-10上也获得了竞争结果(IS = 10.51,FID = 21.89)。
摘要 - 在本文中,我们研究了在通用量子游戏中学习的广泛使用矩阵乘量(MMW)动力学的平衡收敛性和稳定性。这项努力的一个关键困难是,诱导的量子状态动力学自然地分解为(i)经典的,可交换性的成分,该动态以类似于在经典复制器动力学下的混合策略的演化方式控制系统特征值的动力学; (ii)系统特征向量的非交通分量。这个非交通性的组件没有经典的对应物,因此需要引入(渐近)稳定性的新颖概念,以说明游戏量子空间的非线性几何形状。在这种一般情况下,我们表明(i)只有纯量子平衡才能稳定并在MMW动力学下吸引; (ii)作为部分匡威的纯量子状态,满足某种“变分稳定性”条件的纯量子总是会吸引。这使我们能够充分表征在MMW动力学下稳定并吸引的量子NASH平衡的结构,这一事实对预测多代理量子学习过程的结果具有重要意义。
在视觉引导的行为过程中,感觉输入和其相关的行为反应之间可能只相隔数百毫秒。不同时间发生的脉冲如何整合以驱动感知和行动仍不清楚。我们提供了随机的光遗传刺激序列(白噪声)来激发雌雄小鼠 V1 中的抑制性中间神经元,同时让它们执行视觉检测任务。然后,我们对光遗传刺激进行了反向相关分析,以生成神经元行为内核,这是一个无偏、时间精确的估计,用于估计在视觉刺激开始前后不同时刻抑制 V1 脉冲如何影响对该刺激的检测。电生理记录使我们能够捕捉到光遗传刺激对 V1 响应性的影响,并揭示了最早的刺激诱发的脉冲在引导行为方面具有优先权重。这些数据证明,白噪声光遗传学刺激是理解如何解码神经元群体中的脉冲模式以产生感知和动作的有力工具。
极限学习机(ELM)是模式识别和机器学习中的快速且有效的神经网络模型,当标记的训练样本不足以使其下降。转移学习通过使用不同但相关域中的大量标记样本来帮助目标任务学习可靠的模型。在本文中,我们提出了一台具有知识传递性的监督极限学习机器,称为“转移极限学习机器”,具有输出权重对齐(telm-Owa)。首先,它通过对齐由来自源和目标域标记的样品训练的ELM的输出权重矩阵来减少域之间的分布差异。其次,将域间ELM输出权重矩阵之间的近似值添加到目标函数中,以进一步实现知识的跨域转移。tirdly,我们将目标函数视为最小平方问题,并将其转换为标准的ELM模型,以便有效地解决。最后,通过对16组图像数据集和6组文本数据集进行了分类实验对所提出算法的效果进行了验证,结果证明了我们方法相对于其他ELM模型和转移学习方法的竞争性能。
1) 计算权重在软件中可选择熵值法、层次分析法等计算方法; 2) 也可对定性指标进行权重计算。 d) 综合评价 — TOPSIS 分析。 根据软件运行结果,选择评价对象与最优方案接近程度最大的值,该值越大说明越接近最优方案 (系统会根据值的大小自动排序)。
如果神经网络规模较大,则往往在训练时获得更高的准确度,即使生成的模型参数过多。但是,在训练之前、之中或之后小心地删除过多的参数,也可能产生准确度相似甚至更高的模型。在许多情况下,这可以通过简单的启发式方法实现,例如删除一定比例的绝对值最小的权重,即使绝对值并不是权重相关性的完美指标。前提是,获得明显更佳的剪枝性能取决于考虑删除多个权重的综合影响,因此,我们重新审视基于影响的剪枝的经典方法之一:最佳脑外科医生 (OBS)。我们提出了一种易于处理的启发式方法来解决 OBS 的组合扩展,其中我们选择要同时删除的权重,并将其与未剪枝权重的单次系统更新相结合。我们的选择方法在高稀疏性方面优于其他方法,如果在这些方法之后应用单次权重更新,也会很有优势。源代码:github.com/yuxwind/CBS。
如果神经网络规模较大,则往往在训练时获得更高的准确度,即使生成的模型参数过多。但是,在训练之前、之中或之后小心地删除过多的参数,也可能产生准确度相似甚至更高的模型。在许多情况下,这可以通过简单的启发式方法实现,例如删除一定比例的绝对值最小的权重,即使绝对值并不是权重相关性的完美指标。在获得明显更佳的剪枝性能取决于考虑删除多个权重的综合影响这一前提下,我们重新审视了基于影响的剪枝的经典方法之一:最佳脑外科医生 (OBS)。我们提出了一种易于处理的启发式方法来解决 OBS 的组合扩展,其中我们选择要同时删除的权重,并将其与未剪枝权重的单次系统更新相结合。我们的选择方法在高稀疏性方面优于其他方法,如果在这些方法之后应用单次权重更新,也会很有优势。源代码:github.com/yuxwind/CBS。
The EO further denoted that the Secretary of Commerce, through the Assistant Secretary of Commerce for Com- munications and Information and in consultation with the Secretary of State and heads of relevant agencies, would author a report to the President on the “poten- tial benefits, risks, and implications of dual-use foun- dation models for which the model weights are widely available, as well as policy and regulatory recommen- dations pertaining to those模型。”为了履行这项任务,国家电信和进化管理局(NTIA)在2024年2月发布了公开申请评论,并收到了332条评论。4 NTIA进一步进行了广泛的利益相关者宣传,其中包括两项从一系列政策和技术专家收集意见的公共活动。本报告及其发现很大程度上基于此反馈。