摘要:无限制的机器人以电池组的形式带有自己的电源,这对机器人的性能产生了至关重要的影响。尽管对电动汽车,计算机和智能手机等应用的电池技术进行了丰富的研究和优化,但它们通常是机器人系统设计过程中的事后才想到的。本教程论文提出了评估不同电池技术对机器人应用的适用性的标准。考虑到不同应用的要求,对相关电池技术的功能进行了评估和比较。该教程还讨论了当前的局限性和新的技术发展,并指出了电池技术和机器人社区之间跨学科研究的机会。
时间:2023年4月11日,星期二,9:00 - 16:00(Aest)7:00 - 14:00(CST/SST),2023年4月12日,星期三,9:00-12:30(Aest)7:00 - 10:30(CST/SST),位置:Queensland:Qeeensland - Queensland - Queensland - Queensland - 46-230室,访问了46-230号房间,并访问了Will be livia and will be livia in。 BEAMeeting) Organizers: GenISys GmbH, CMM (UQ), ANFF-VIC(MCN, RMIT-MNRF), RPF(USYD), ANFF-ACT(ANU) BEAMeetings are a technical exchange platform for the direct write community focused on e-Beam and laser lithography, data-preparation, PEC, process correction, lithography simulation, and metrology.它是Beamer用户和对Genisys软件感兴趣的人的平台。过去,这是一个与Genisys团队见面,面对深入讨论,交流思想并定位您的需求和愿望的绝佳机会。在标准Beamer/Tracer/Lab的顶部,今年我们想强调纳米制造中心显微镜团队的完整计量解决方案。
摘要 对行为非人类灵长类动物进行电生理学研究通常需要将动物与其社会群体分开,并限制其部分运动,以进行良好控制的实验。当研究目标本身并不要求限制动物的运动时,通常仍需要通过系留数据采集来满足实验需求。同时,最近的技术进步允许在有限尺寸的围栏内以高带宽进行无线神经生理学记录。在这里,我们展示了来自不受约束的恒河猴的单单位分辨率无线神经记录,当时它们在我们定制的独立触摸屏系统 [实验行为仪器 (XBI)] 上在其家庭环境中执行自定进度的结构化视觉运动任务。我们能够成功地表征神经对任务参数的调节,例如在运动规划和执行过程中的视觉空间选择性,这与通过基于设置的神经生理学记录获得的现有结果一致。我们得出结论,当出于科学原因不需要限制运动和/或高度控制、隔离的环境时,笼式无线神经记录是一种可行的选择。我们提出了一种方法,让动物能够以自定节奏的方式使用我们的 XBI 设备,既可以进行全自动训练和认知测试,也可以在熟悉的环境中获取神经数据,与同类保持听觉联系,有时还可以保持视觉联系。
关联粒子系统出现在现代科学的许多领域,代表了自然界中最难解决的计算问题之一。当相互作用变得与其他能量尺度相当时,这些系统中的计算挑战就会出现,这使得每个粒子的状态都依赖于所有其他粒子 1 。三体问题缺乏通解,强关联电子缺乏可接受的理论,这表明当粒子数或相互作用强度增加时,我们对关联系统的理解就会逐渐减弱。相互作用系统的标志之一是多粒子束缚态的形成 2–9 。在这里,我们开发了一个高保真可参数化的 fSim 门,并在一个由 24 个超导量子比特组成的环中实现自旋-½ XXZ 模型的周期量子电路。我们研究这些激发的传播,并观察它们对多达 5 个光子的束缚性质。我们设计了一种相敏方法来构建束缚态的少体谱,并通过引入合成通量来提取它们的伪电荷。通过在环和附加量子位之间引入相互作用,我们观察到束缚态对可积性破坏的意外恢复力。这一发现与不可积系统中的束缚态在其能量与连续谱重叠时不稳定的想法相悖。我们的工作为相互作用光子的束缚态提供了实验证据,并发现了它们在可积性极限之外的稳定性。
利用电磁 (EM) 场进行的无线通信是人体周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中被大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战以及低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,避免了因没有场模态转换而导致的转导损耗,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗。 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 中使用差分激励,在接收器 (RX) 中使用差分信号拾取,同时通过阻断流经脑组织的任何直流电流路径,在 1MHz 载波频率下提供比传统人体电流通信 (G-HBC) 低 ~41 倍的低功耗。由于通过人体组织的电信号传输是电准静态的,频率高达几十 MHz,因此 BP-QBC 可实现从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。BP-QBC TX 的功耗在 1Mbps 时仅为 0.52 μW(占空比为 1%),这在从可穿戴设备中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。这种低端到端通道损耗和高数据速率是由一种全新的大脑通信和供电方式实现的,在神经生物学研究、脑机接口、电疗和联网医疗领域具有深远的社会和科学影响。
我们提出了一种由连接到普通金属导线的量子点 (QD) 组成的装置来检测马约拉纳束缚态 (MBS),该束缚态形成于拓扑超导纳米线 (TSNW) 的末端,并以自旋相关的杂化强度耦合到导线上。泄漏到导线中的 MBS 信息可以从用作扫描隧道显微镜 (STM) 尖端的 QD 的光谱函数推断出来。研究发现,铅 - MBS 相互作用会诱导一种束缚态,其特征是点的零能量谱函数中出现一个无限高的峰。MBS 的两种模式之间的重叠使该束缚态变成共振态,因此零能量峰分裂成三个,中心峰的高度等于没有铅 - MBS 耦合时的高度。我们还发现,MBS 对点内库仑相互作用引起的点谱函数中附加峰的影响较小。
手稿版本:作者接受的手稿包装中呈现的版本是作者接受的手稿,可能与已发布的版本或记录的版本有所不同。持续的包裹URL:http://wrap.warwick.ac.uk/168172如何引用:有关最新的书目引用信息,请参阅发布版本。如果已知已发布的版本,则链接到上面的存储库项目页面将包含有关访问它的详细信息。版权所有和重复使用:沃里克研究档案门户(WARAP)使沃里克大学的研究人员在以下条件下可用开放访问权限。版权所有©以及此处介绍的论文版本的所有道德权利属于单个作者和/或其他版权所有者。在合理且可行的范围内,已在可用的情况下检查了包装中可用的材料是否有资格。未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。发布者的声明:请参阅“存储库”页面,发布者的语句部分,以获取更多信息。有关更多信息,请通过以下网络与WARP团队联系:wrap@warwick.ac.uk。
具有连续体束缚态的硅槽形纳米立方体高效二次谐波产生 方慈哲,杨奇宇,袁清晨,顾林鹏,甘雪涛*,邵瑶,刘燕,*韩根泉,郝越 方聪,杨倩,刘英教授,韩刚教授,郝英教授 西安电子科技大学微电子学院宽禁带半导体技术国家重点实验室,西安 710071,中国 电子邮件:xdliuyan@xidian.edu.cn 袁倩,顾琳,甘雪教授 西北工业大学物理科学与技术学院,工业和信息化部光场操控与信息获取重点实验室,陕西省光信息技术重点实验室,西安 710129,中国 电子邮件:xuetaogan@nwpu.edu.cn Y.邵 国家电网上海能源互联网研究院,上海市浦东新区李冰路251号,201210,中国 刘宇 教授 智能芯片与器件研究中心 浙江省重点实验室,杭州,311121,中国 关键词:二次谐波产生,连续体中的束缚态,硅,介电纳米结构 具有中心对称性的光学材料,例如硅和锗,不幸的是
利用电磁 (EM) 场进行的无线通信是人身周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中产生大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战并实现低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗,从而避免了因没有场模态转换而导致的转导损耗。 12 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 处使用差分激励,在接收器 (RX) 处拾取差分信号,同时通过阻断通过脑组织的任何直流电流路径,在 1MHz 载波频率下提供约 41 倍的低功耗,相对于传统的人体电流通信 (G-HBC)。由于通过人体组织的电信号传输是电准静态的,频率高达数十 MHz,因此 BP-QBC 允许从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。 BP-QBC TX 的功耗在 1Mbps(占空比为 1%)时仅为 0.52 μW,这在从可穿戴中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。如此低的端到端通道损耗和高数据速率是由一种全新的脑部通信和供电模式实现的,对神经生物学研究、脑机接口、电药物和互联医疗保健等领域具有深远的社会和科学影响。
Es 可实现删除、插入和碱基替换而不会造成双链断裂 1 。然而,目前的 PE2、PE2* 和 PEmax 效应物(nCas9 与 Moloney 鼠白血病病毒 RT(M-MLV RT)的融合)1 – 3 > 6.3 千碱基 (kb),超出了 AAV 的包装能力。高产量生产如此大的蛋白质或 mRNA(用于核糖核蛋白 (RNP) 或 RNA 递送)也是一项挑战。尽管一些拆分策略已用于递送 Cas9 相关基因组编辑工具 4 ,包括拆分内含肽 5 – 7 和 MS2(参考文献 8 – 10)或 SunTag 11 系链,但大多数拆分方法才刚刚开始应用于 PE 2、12、13。这些元素增加了 PE 系统的尺寸、分子复杂性以及生产和递送负担,并且限制了 PE 开发的组合吞吐量(即核酸酶和 RT 成分的混合和匹配)。pegRNA 优化对于有效的引物编辑也很重要。当前的 pegRNA 是一种结合 RNA,由 sgRNA 和包含 RT 模板 (RTT) 和引物结合位点 (PBS) 的 3′ 延伸组成。尽管在 PE 系统中整合 RNA 分子很简单,但由于 PBS 和间隔区之间不可避免的碱基配对以及潜在的 RTT-支架相互作用,它容易发生 RNA 错误折叠。最后,pegRNA 中的 3′ 末端延伸暴露在外,易受核酸酶降解,这可能会损害 pegRNA 的完整性。虽然 3′ 末端二级结构提高了 pegRNA 的稳定性 14 ,但仍需要进一步努力减少 pegRNA 的错误折叠和不稳定性。